Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 319-324    DOI:
Research Articles Current Issue | Archive | Adv Search |
Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film
Zhuji Jin, Zewei Yuan, Renke Kang, Boxian Dong
Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology , Dalian 116024, China
Download:  HTML  PDF(900KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost. By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere. However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality. In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS). The process of ball milling,
composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed. The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix. The density of composite can be improved by mechanical alloying. The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sintering in hardness, high-temperature oxidation resistance and wearability. These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film.

Key words:  CVD diamond film      FeNiCr matrix-TiC composite      Spark plasma sintering      Mechanical alloying     
Received:  09 January 2008     
ZTFLH: 

TB331

 
Fund: 

the National Natural Science Foundation of China under grant No. 50575034.

Corresponding Authors:  Yuan Zewei     E-mail:  yuanzewei@hotmail.com

Cite this article: 

Yuan Zewei,ZhuJi Jin,Xingwei Ma,Boxian Dong. Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film. J Mater Sci Technol, 2009, 25(03): 319-324.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/319

[1 ] H.O. Pierson: Handbook of Carbon, Graphite, Diamond and Fullerene: Properties, Processing and Applications, Noyes Publications, Park Ridge, 1993.
[2 ] A.P. Malshe, B.S. Park, W.D. Brown and H.A. Naseem: Diamond and Related Materials, 1999, (8), 1198.
[3 ] A.A. Altukhov, M.S. Afanas0ev, V.B. Kvaskov, V.E. Lyubchenko, A.Yu. Mityagin, E.N.Murav0ev, L.A. Pomortsev, V.A. Potapov and B.V. Spitsyn: Inorganic Materials, 2004, 40, 50.
[4 ] C.J. Tang, A.J. Neves, A.J.S. Fernandes, J. Gracio and N. Ali: Diamond and Related Materials, 2003, 12, 1411.
[5 ] C.M. Sung and M.F. Tai: Int. J. of Refractory Metal & Hard Materials, 1997, 15, 237
[6 ] Masao Uermura: Tribology International, 2004, 37, 887.
[7 ] X.Y. Lu, Z.S. Jin, S.Q. Hao, H.Y. Peng and J.S. Liu: New Carbon Materials, 2004, 2(19), 141. (in Chinese)
[8 ] J.M. Liu, Z. Jiang, H.D. Zhang, F.X. LV and W.Z. Tang: Journal of University of Science and Technology Beijing, 2001, 23(2), 42.
[9 ] M. Mochida, S. Moriya, T. Shimamune and A. Une: Journal of the Japan Society of Precision Engineering, 2001, 67(4), 597. (in Japanese)
[10] Y. CHEN, L.C. ZHANG and J.A. Arsecularatne: International Journal of Machine Tools & Manufacture, 2007, 47, 1615.
[11] J.A. Weima, J. von Borany and U. Kreissig: Journal of the Electrochemical Society, 2001, 148(11), 607.
[12] Z.J. Liu, Z.L. Ning, F.Z. Li, X.R. Yao and S.Z. Ren: Journal of Materials Science & Technology, 2005, 21.
[13] Y.W. Yan, Z.Y. Fu and R.Z. Yuan: Journal of Wuhan University of Technology-Mater. Sci. Ed, 2003, 12, 14.
[14] X.H. Wang, S.L. Song, S.Y. Qu and Z.D. Zou: Surface & Coatings Technology, 2007, 201, 5899.
[15] Y.J. Xiong, X.B. Li, R.T. Liu and F.A. Zhao: Ce-mented Carbide, 2006, 23(2), 65. (in Chinese)
[16] Y. Wu and G. Zheng: Powder Metallurgy Industry, 1999, 6, 17. (in Chinese)
[17] H.Y. Liu and J.H. Huang: Rare Metal Materials and Engineering, 2006, 35, 1061.
[18] K.K. Gan, X.B. Li, Y.J. Xiong and R.T. Liu: Powder Metallurgy Industry, 2004, 4, 21 (in Chinese)
[19] X.D. Hui, Y.S. Yang, Z.F. Wang, G.Q. Yuan and X.C. Chen: Mater. Sci. Eng., 2000, A282, 187.
[20] Z.M. Sun: Technical Bulletin of the Tohoku National Industrial Research Institute, 1999, 23, 44.
[21] M.S. Li: High Temperature Corrosion of Metal, Metallurgical Industry Press, Beijing, 2001, 79. (in Chinese)

[1] Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering[J]. 材料科学与技术, 2020, 41(0): 149-158.
[2] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[3] Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. 材料科学与技术, 2019, 35(11): 2600-2607.
[4] Wang Qunchang, Chen Minghui, Shan Zhongmao, Sui Chengguo, Zhang Lin, Zhu Shenglong, Wang Fuhui. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing[J]. 材料科学与技术, 2017, 33(11): 1416-1423.
[5] Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan, Lei Liwen, Xiao Han, Fu Zhengyi. Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering[J]. 材料科学与技术, 2017, 33(10): 1172-1176.
[6] Zhao Ke, Cao Baobao, Liu Jinling, Wang Yiguang, An Linan. In-situ synthesis of Al76.8Fe24 complex metallic alloy phase in Al-based hybrid composite[J]. 材料科学与技术, 2017, 33(10): 1177-1181.
[7] Xiaopu Li, Chongyu Liu, Kun Luo, Mingzhen Ma, Riping Liu. Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering[J]. J. Mater. Sci. Technol., 2016, 32(4): 291-298.
[8] Tan Zhen,Wang Lu,Xue Yunfei,Cheng Xingwang,Zhang Long. Structural Modification of Al65Cu16.5Ti18.5 Amorphous Powder through Annealing and Post Milling: Improving Thermal Stability[J]. 材料科学与技术, 2016, 32(12): 1326-1331.
[9] Li R.T.,K. Murugan Vinod,Dong Z.L.,Khor K.A.. Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al[J]. 材料科学与技术, 2016, 32(10): 1054-1058.
[10] Hefei Huang, Chao Yang, Massey de los Reyes, Yongfeng Zhou, Long Yan, Xingtai Zhou. Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature[J]. J. Mater. Sci. Technol., 2015, 31(9): 923-929.
[11] Ram S. Maurya, Tapas Laha. Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al-TM-RE Based Amorphous Alloys[J]. J. Mater. Sci. Technol., 2015, 31(11): 1118-1124.
[12] Bin Li, Guojun Zhang, Feng Jiang, Shuai Ren, Gang Liu, Jun Sun. Characterization of Mo-Si-B Nanocomposite Powders Produced Using Mechanical Alloying and Powder Heat Treatment[J]. J. Mater. Sci. Technol., 2015, 31(10): 995-1000.
[13] Hansang Kwon, Marc Leparoux, Akira Kawasaki. Functionally Graded Dual-nanoparticulate-reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering[J]. J. Mater. Sci. Technol., 2014, 30(8): 736-742.
[14] Baogang Yang, Songlin Li, Hang Wang, Jintao Xiang, Qiumin Yang. Effect of MWCNTs Additive on Desorption Properties of Zn(BH4)2 Composite Prepared by Mechanical Alloying[J]. J. Mater. Sci. Technol., 2013, 29(8): 715-719.
[15] Shufeng Li, Hisashi Imai, Katsuyoshi Kondoh. Microstructure, Phase Transformation, Precipitation Behavior and Mechanical Properties of P/M Cu40Zne1.0 wt% Ti Brass Alloy via Spark Plasma Sintering and Hot Extrusion[J]. J. Mater. Sci. Technol., 2013, 29(11): 1018-1024.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.