J. Mater. Sci. Technol. ›› 2020, Vol. 55: 212-222.DOI: 10.1016/j.jmst.2020.02.034
• Research Article • Previous Articles Next Articles
J.S. Cha, D.H. Kim, H.Y. Hong, K. Park*()
Received:
2019-11-02
Accepted:
2020-02-02
Published:
2020-10-15
Online:
2020-10-27
Contact:
K. Park
J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems[J]. J. Mater. Sci. Technol., 2020, 55: 212-222.
Fig. 2. (a) XPS survey spectra of calcined Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3) powders. High-resolution XPS spectra of (b) Ca 2p and (c) Y 3d in calcined Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3) powders.
Fig. 3. High-resolution XPS spectra of Co 2p in calcined Ca3-xYxCo4O9+δ powders with x = (a) 0, (b) 0.1, and (c) 0.3. Note that “▼” in (c) indicates satellite peak. High-resolution XPS spectra of O 1s in calcined Ca3-xYxCo4O9+δ powders with x = (d) 0, (e) 0.1, and (f) 0.3.
Ca3Co4O9 | Ca2.9Y0.1Co4O9+δ | Ca2.7Y0.3Co4O9+δ | ||
---|---|---|---|---|
Relative concentrations of Co ions (%) | Co3+ | 28.1 | 45.6 | 69.0 |
Co4+ | 71.9 | 54.4 | 31.0 | |
Binding energies of Co ions (eV) | Co3+ in Co 2p1/2 | 794.1 | 795.2 | 794.8 |
Co4+ in Co 2p1/2 | 795.1 | 796.5 | 796.6 | |
Co3+ in Co 2p3/2 | 779.1 | 780.2 | 779.9 | |
Co4+ in Co 2p3/2 | 780.1 | 781.5 | 781.6 | |
Binding energies of O ions (eV) | O 1s in CoO2 | 528.6 | 528.9 | 529.0 |
O 1s in CaO | 531.2 | 531.3 | 531.4 | |
O 1s in absorbed H2O | 533.3 | 533.0 | 533.2 |
Table 1 The relative concentration of Co3+ and Co4+ ions and the binding energies of Co and O ions in calcined Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3) powders.
Ca3Co4O9 | Ca2.9Y0.1Co4O9+δ | Ca2.7Y0.3Co4O9+δ | ||
---|---|---|---|---|
Relative concentrations of Co ions (%) | Co3+ | 28.1 | 45.6 | 69.0 |
Co4+ | 71.9 | 54.4 | 31.0 | |
Binding energies of Co ions (eV) | Co3+ in Co 2p1/2 | 794.1 | 795.2 | 794.8 |
Co4+ in Co 2p1/2 | 795.1 | 796.5 | 796.6 | |
Co3+ in Co 2p3/2 | 779.1 | 780.2 | 779.9 | |
Co4+ in Co 2p3/2 | 780.1 | 781.5 | 781.6 | |
Binding energies of O ions (eV) | O 1s in CoO2 | 528.6 | 528.9 | 529.0 |
O 1s in CaO | 531.2 | 531.3 | 531.4 | |
O 1s in absorbed H2O | 533.3 | 533.0 | 533.2 |
Fig. 6. Refined XRD profiles of sintered Ca3-xYxCo4O9+δ with x = (a) 0, (b) 0.2, and (c) 0.3. (d) Unit cell volume of sintered Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3), obtained from the refined XRD data, as a function of Y3+ content.
Fig. 7. Crystal structure of the Ca2.7Y0.3Co4O9+δ fabricated using sol-gel processed powders, showing the CoO2 and Ca2CoO3 layers stacking alternatively along the c-axis direction of the unit cell.
Ca3Co4O9 | Ca2.9Y0.1Co4O9+δ | Ca2.8Y0.2Co4O9+δ | Ca2.7Y0.3Co4O9+δ | |
---|---|---|---|---|
Crystal structure | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | C2/m | C2/m | C2/m | C2/m |
Lattice parameters | ||||
a (?) | 4.8332 | 4.8325 | 4.8200 | 4.8133 |
b1 (?) | 4.5505 | 4.5567 | 4.5350 | 4.5268 |
b2 (?) | 2.8189 | 2.8189 | 2.8189 | 2.7797 |
c (?) | 10.8402 | 10.8147 | 10.7923 | 10.7894 |
β (°) | 98.0 | 98.1 | 98.0 | 98.1 |
Reliability factors | ||||
Rwp (%) | 8.39 | 7.14 | 8.26 | 8.01 |
Rexp (%) | 2.47 | 2.56 | 2.53 | 2.63 |
GOF | 3.39 | 2.79 | 3.26 | 3.04 |
Table 2 Crystallographic details and fitting parameters of Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3) obtained from the XRD Rietveld refinement.
Ca3Co4O9 | Ca2.9Y0.1Co4O9+δ | Ca2.8Y0.2Co4O9+δ | Ca2.7Y0.3Co4O9+δ | |
---|---|---|---|---|
Crystal structure | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | C2/m | C2/m | C2/m | C2/m |
Lattice parameters | ||||
a (?) | 4.8332 | 4.8325 | 4.8200 | 4.8133 |
b1 (?) | 4.5505 | 4.5567 | 4.5350 | 4.5268 |
b2 (?) | 2.8189 | 2.8189 | 2.8189 | 2.7797 |
c (?) | 10.8402 | 10.8147 | 10.7923 | 10.7894 |
β (°) | 98.0 | 98.1 | 98.0 | 98.1 |
Reliability factors | ||||
Rwp (%) | 8.39 | 7.14 | 8.26 | 8.01 |
Rexp (%) | 2.47 | 2.56 | 2.53 | 2.63 |
GOF | 3.39 | 2.79 | 3.26 | 3.04 |
Fig. 12. (a) Total thermal conductivity κtotal, (b) electronic thermal conductivity κel, and (c) phonon thermal conductivity κph of Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3).
Temperature (K) | ||||
---|---|---|---|---|
773 | 873 | 973 | 1073 | |
Ca3Co4O9 | 93.3 | 91.7 | 90.1 | 88.4 |
Ca2.9Y0.1Co4O9+δ | 94.9 | 93.5 | 92.1 | 90.4 |
Ca2.8Y0.2Co4O9+δ | 95.2 | 93.9 | 92.5 | 90.9 |
Ca2.7Y0.3Co4O9+δ | 95.5 | 94.2 | 92.8 | 91.3 |
Table 3 The ratio of κph to κtotal for Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3).
Temperature (K) | ||||
---|---|---|---|---|
773 | 873 | 973 | 1073 | |
Ca3Co4O9 | 93.3 | 91.7 | 90.1 | 88.4 |
Ca2.9Y0.1Co4O9+δ | 94.9 | 93.5 | 92.1 | 90.4 |
Ca2.8Y0.2Co4O9+δ | 95.2 | 93.9 | 92.5 | 90.9 |
Ca2.7Y0.3Co4O9+δ | 95.5 | 94.2 | 92.8 | 91.3 |
Fig. 13. Dimensionless figure-of-merit (ZT) of (a) Ca3-xYxCo4O9+δ (0 ≤ x ≤ 0.3) fabricated using sol-gel processed powders and of (b) Ca2.7Y0.3Co4O9+δ fabricated using sol-gel processed powders and commercial powders.
[1] |
C. Chang, G. Tan, J. He, M.G. Kanatzidis, L.D. Zhao, Chem. Mater. 30 (2018) 7355-7367.
DOI URL |
[2] |
L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377.
DOI URL |
[3] |
J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, NPG Asia Mater. 2 (2010) 152-158.
DOI URL |
[4] |
C.M. Kim, J.W. Seo, S.-M. Choi, W.?S. Seo, S. Lee, Y.S. Lim, K. Park, Electron. Mater. Lett. 11 (2015) 276-281.
DOI URL |
[5] |
J.W. Seo, J.S. Cha, S.O. Won, K. Park, J. Am. Ceram. Soc. 100 (2017) 3608-3617.
DOI URL |
[6] |
A. Bhaskar, Y.C. Huang, C.J. Liu, Solid State Commun. 168 (2013) 24-27.
DOI URL |
[7] |
N. Prasoetsopha, S. Pinitsoontorn, T. Kamwanna, V. Amornkitbamrung, K. Kurosaki, Y. Ohishi, H. Muta, S. Yamanaka, J. Alloys. Compd. 588 (2014) 199-205.
DOI URL |
[8] |
G. Constantinescu, Sh. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, A. Sotelo, J. Alloys. Compd. 577 (2013) 511-515.
DOI URL |
[9] |
S. Porokhin, L. Shvanskaya, V. Khovaylo, A. Vasiliev, J. Alloys. Compd. 695 (2017) 2844-2849.
DOI URL |
[10] |
H.Q. Liu, Y. Song, S.N. Zhang, X.B. Zhao, F.P. Wang, J. Phys. Chem. Solids 70 (2009) 600-603.
DOI URL |
[11] |
H.Q. Liu, X.B. Zhao, T.J. Zhu, Y. Song, F.P. Wang, Curr. Appl. Phys. 9 (2009) 409-413.
DOI URL |
[12] |
A. Le Bail, H. Duroy, J.L. Fourquet, Mater. Res. Bull. 23 (1988) 447-452.
DOI URL |
[13] |
M. James, M.L. Carter, J.N. Watson, J. Solid State Chem. 174 (2003) 329-333.
DOI URL |
[14] | H. Wattanasarn, U. Seetawan, C. Nakhowong, S. Boonmeethongyoo, T. Seetawan, J. Mater. Sci. Appl. Energy 1 (2012) 14-18. |
[15] |
S. Pinitsoontorn, N. Lerssongkram, A. Harnwunggmoung, K. Kurosaki, S. Yamanaka, J. Alloys. Compd. 503 (2010) 431-435.
DOI URL |
[16] |
N. Prasoetsopha, S. Pinitsoontorn, V. Amornkitbamrung, Electron. Mater. Lett. 8 (2012) 305-308.
DOI URL |
[17] |
C.S. Lim, C.K. Chua, Z. Sofer, O. Jankovsk′y, M. Pumera, Chem. Mater. 26 (2014) 4130-4136.
DOI URL |
[18] | Z. Shi, F. Gao, J. Zhu, J. Xu, Y. Zhang, T. Gao, M. Qin, J. Materiom. 5 (2019) 711-720. |
[19] |
Z. Shi, F. Gao, J. Xu, J. Zhu, Y. Zhang, T. Gao, M. Qin, M. Reece, H. Yan, J. Eur. Ceram. Soc. 39 (2019) 3088-3093.
DOI URL |
[20] |
S. Butt, W. Xu, W.Q. He, Q. Tan, G.K. Ren, Y. Lin, C.W. Nan, J. Mater. Chem. A Mater. Energy Sustain. 2 (2014) 19479-19487.
DOI URL |
[21] |
Y. Yin, S. Saini, D. Magginetti, K. Tian, A. Tiwari, Ceram. Int. 43 (2017) 9505-9511.
DOI URL |
[22] |
S. Feng, W. Yang, J. Sol Gel Sci. Technol. 58 (2011) 330-333.
DOI URL |
[23] |
K. Agilandeswari, A.R. Kumar, J. Magn. Magn. Mater. 364 (2014) 117-124.
DOI URL |
[24] |
S. Salari, F.E. Ghodsi, J. Lumin. 182 (2017) 289-299.
DOI URL |
[25] | Y.S. Vidya, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, S.C. Prashantha, C. Shivakumara, Danithkumar, Spectrochim. Acta A 135 (2015) 241-251. |
[26] |
G. Fu, G. Yan, L. Sun, H. Zhang, H. Guo, J. Wang, S. Wang, RSC Adv. 5 (2015) 26383-26387.
DOI URL |
[27] |
D. Grebille, S. Lambert, F. Bourée, V. Petrícek, J. Appl. Cryst. 37 (2004) 823-831.
DOI URL |
[28] | H.Y. Choi, M.H. Lee, S.M. Choi, W.S. Seo, H.L. Lee, J. Ceram. Process. Res. 13 (2012) s206-s210. |
[29] |
R.D. Shannon, Acta Cryst. A 32 (1976) 751-767.
DOI URL |
[30] |
N.Y. Wu, T.C. Holgate, N.V. Nong, N. Pryds, S. Linderoth, J. Eur. Ceram. Soc. 34 (2014) 925-931.
DOI URL |
[31] |
S.W. Nam, Y.S. Lim, S.M. Choi, W.S. Seo, K. Park, J. Nanosci. Nanotechnol. 11 (2011) 1734-1737.
DOI URL PMID |
[32] |
T. Huang, M.N. Rahaman, T.I. Mah, T.A. Parthasarathay, J. Mater. Res. 15 (2000) 718-726.
DOI URL |
[33] |
I.P. Shapiro, R.I. Todd, J.M. Titchmarsh, S.G. Roberts, J. Eur. Ceram. Soc. 29 (2009) 1613-1624.
DOI URL |
[34] |
A. Rittidech, P. Wisuwan, T. Pinkhunthod, Am. J. Appl. Sci. 15 (2018) 409-415.
DOI URL |
[35] |
F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, G.Z. Zhang, Solid State Sci. 13 (2011) 1443-1447.
DOI URL |
[36] |
A. Bhaskar, Y.C. Huang, C.J. Liu, Ceram. Int. 40 (2014) 5937-5943.
DOI URL |
[37] |
L. Xu, F. Li, Y. Wang, J. Alloys. Compd. 501 (2010) 115-119.
DOI URL |
[38] |
P.H. Isasi, M.E. Lopes, M.R. Nunes, M.E.M. Jorge, J. Phys. Chem. Solids 70 (2009) 405-411.
DOI URL |
[39] |
J.W. Seo, J.S. Cha, K. Park, Electron. Mater. Lett. 12 (2016) 113-120.
DOI URL |
[40] |
S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, H. Yamada, Chem. Mater. 12 (2000) 2424-2427.
DOI URL |
[41] |
J. Nan, J. Wu, Y. Deng, C.W. Nan, Solid State Commun. 124 (2002) 243-246.
DOI URL |
[42] |
Y. Wang, Y. Sui, J. Cheng, X. Wang, J. Miao, Z. Liu, Z. Qian, W. Su, J. Alloys. Compd. 448 (2008) 1-5.
DOI URL |
[43] |
J. Zhang, D. Wu, D. He, D. Feng, M. Yin, X. Qin, J. He, Adv. Mater. 29 (2017) 1703148.
DOI URL |
[44] |
H. Wang, Z.M. Gibbs, Y. Takagiwa, G.J. Snyder, Energy Environ. Sci. 7 (2014) 804-811.
DOI URL |
[45] |
J. Pei, G. Chen, N. Zhou, D.Q. Lu, F. Xiao, Physica B 406 (2011) 571-574.
DOI URL |
[46] |
F. Zhang, Q. Lu, T. Li, X. Zhang, J. Zhang, X. Song, J. Rare Earths 31 (2013) 778-783.
DOI URL |
[47] | C. Boyle, P. Carvillo, Y. Chen, E.J. Barbero, D. Mcintyre, X. Song, J. Eur. Ceram. Soc. 36 (2016) 601-607. |
[48] |
W. Yang, H. Qian, J. Gan, W. Wei, Z. Wang, G. Tang, J. Electr. Mater. 45 (2016) 4171-4176.
DOI URL |
[49] | Y. Wang, Y. Sui, W. Su, J. Appl. Phys. 104 (2008) 093703. |
[50] |
Y. Wang, Y. Sui, F. Li, L. Xu, X. Wang, W. Sui, X. Liu, Nano Energy 1 (2012) 456-465.
DOI URL |
[51] |
F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, G.Z. Zhang, Solid State Ion. 201 (2011) 1-5.
DOI URL |
[52] |
X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang, Appl. Phys. Lett. 92 (2008) 182101.
DOI URL |
[53] | M.E. Wieser, Pure Appl. Chem. Chem. 78 (2006) 2051-2066. |
[54] | G. Saucke, S. Populoh, April, 1-5 2013, pp. 83-92. |
[55] |
J. Nan, J. Wu, Y. Deng, C.W. Nan, J. Eur. Ceram. Soc. 23 (2003) 859-863.
DOI URL |
[1] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[2] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[3] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[4] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[5] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
[6] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[7] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
[8] | Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 41(0): 149-158. |
[9] | Lei Lei, Yu Su, Leandro Bolzoni, Fei Yang. Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 7-14. |
[10] | Qingzheng Jiang, Jie Song, Qingfang Huang, Sajjad Ur Rehman, Lunke He, Qingwen Zeng, Zhenchen Zhong. Enhanced magnetic properties and improved corrosion performance of nanocrystalline Pr-Nd-Y-Fe-B spark plasma sintered magnets [J]. J. Mater. Sci. Technol., 2020, 58(0): 138-144. |
[11] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[12] | Jing Wang, Muchun Guo, Jianbo Zhu, Dandan Qin, Fengkai Guo, Qian Zhang, Wei Cai, Jiehe Sui. Enhanced thermoelectric properties of Zintl phase YbMg2Bi1.98 through Bi site substitution with Sb [J]. J. Mater. Sci. Technol., 2020, 59(0): 189-194. |
[13] | Shiyi Wen, Yuling Liu, George Kaptay, Yong Du. A new model to describe composition and temperature dependence of thermal conductivity for solution phases in binary alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 72-82. |
[14] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[15] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||