Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 7-14    DOI: 10.1016/j.jmst.2020.02.023
Research Article Current Issue | Archive | Adv Search |
Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite
Lei Lei1, Yu Su1, Leandro Bolzoni, Fei Yang*()
Waikato Centre for Advanced Materials and Manufacturing, School of Engineering, University of Waikato, Hamilton, 3240, New Zealand
Download:  HTML  PDF(4202KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A Cu-1.5 wt.%Ti/Diamond (55 vol.%) composite was fabricated by hot forging from powder mixture of copper, titanium and diamond powders at 1050 °C. A nano-thick TiC interfacial layer was formed between the diamond particle and copper matrix during forging, and it has an orientation relationship of (111)TiC//(002)Cu&[1 $\ bar {1}$ 0]TiC//[1 $\bar{1}$ 0]Cu with the copper matrix. HRTEM analysis suggests that TiC is semi-coherently bond with copper matrix, which helps reduce phonon scattering at the TiC/Cu interface and facilitates the heat transfer, further leading to the hot-forged copper/diamond composite (referred as to Cu-Ti/Dia-0) has a thermal conductivity of 410 W/mK, and this is about 74 % of theoretical thermal conductivity of hot-forged copper/composite (552 W/mK). However, the formation of thin amorphous carbon layer in diamond particle (next to the interfacial TiC layer) and deformed structure in the copper matrix have adverse effect on the thermal conductivity of Cu-Ti/Dia-0 composite. 800 °C-annealing eliminates the discrepancy in TiC interface morphology between the diamond-{100} and -{111} facets of Cu-Ti/Dia-0 composite, but causes TiC particles coarsening and agglomerating for the Cu-Ti/Dia-2 composite and interfacial layer cracking and spallation for the Cu-Ti/Dia-1 composite. In addition, a large amount of graphite was formed by titanium-induced diamond graphitization in the Cu-Ti/Dia-2 composite. All these factors deteriorate the heat transfer behavior for the annealed Cu-Ti/Dia composites. Appropriate heat treatment needs to be continually investigated to improve the thermal conductivity of hot-forged Cu-Ti/Dia composite by eliminating deformed structure in the copper matrix with limit/without impacts on the formed TiC interfacial layer.

Key words:  Copper/diamond composite      Hot forging      Interface characteristics      Thermal conductivity      Heat treatment     
Received:  12 November 2019     
Corresponding Authors:  Fei Yang     E-mail:  fei. yang@waikato.ac.nz
About author:  1 Equal contribution.

Cite this article: 

Lei Lei, Yu Su, Leandro Bolzoni, Fei Yang. Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite. J. Mater. Sci. Technol., 2020, 49(0): 7-14.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.023     OR     https://www.jmst.org/EN/Y2020/V49/I0/7

Sample Heating rate (℃/min) Temperature (℃) Holding time (h) Cooling rate (℃/min)
Cu-Ti/Dia-1 30 800 1 5
Cu-Ti/Dia-2 5 800 2 5
Table 1  The heat treatment parameters for the encapsulated specimens.
Fig. 1.  XRD patterns of (a) Cu-Ti, (b) Cu-Ti/Dia-0, (c) Cu-Ti/Dia-1, and (d) Cu-Ti/Dia-2 composites.
Fig. 2.  SEM microstructures of Cu-Ti/Dia-0 (a-c), Cu-Ti/Dia-1 (d-f) and Cu-Ti/Dia-2 (g-i) composites.
Fig. 3.  Surface morphology of the extracted diamond particles from the copper/diamond composites: (a-c) Cu-Ti/Dia-0, (d-f) Cu-Ti/Dia-1, (g-i) Cu-Ti/Dia-2.
Fig. 4.  TEM analysis of Cu-Ti/Dia-0 composite: (a) interface, (b) point EDS, and (c) line-scanning EDS.
Fig. 5.  Interface characteristics of copper-Ti/diamond. (a) Representative TEM image; (b) and (c) HRTEM images recorded at the marked b and c regions in (a); (d), (e) and (f) HRTEM images recorded at the marked d, e, f regions in (b) and (c); and (g) HRTEM images recorded at the marked g region in (a).
Fig. 6.  (a) Thermal conductivity and thermal diffusivity of hot-pressed Cu and Cu-Ti alloy, and Cu-Ti/Dia-0, Cu-Ti/Dia-1, and Cu-Ti/Dia-2 composites, (b) thermal conductivity comparison between current research and published papers.
Fig. 7.  The tensile fracture surface of Cu-Ti/Dia-0 composite.
[1] A.L. Moore, L. Shi, Mater. Today 17 (2014) 163-174.
doi: 10.1016/j.mattod.2014.04.003
[2] J.S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Science 361 (2018) 575-578.
doi: 10.1126/science.aat5522 pmid: 29976798
[3] H.F. Zhou, N. Du, J.D. Guo, S. Liu, J. Mater. Sci. Technol. 35 (2019) 1797-1802.
[4] E. Lee, E. Menumerov, R.A. Hughes, S. Neretina, T.F. Luo, ACS Appl. Mater. Interfaces 10 (2018) 34690-34698.
pmid: 30209944
[5] C. Monachon, L. Weber, Acta Mater. 73 (2014) 337-346.
[6] J. Anaya, S. Rossi, M. Alomari, E. Kohn, L. Tóth, B. Pécz, K.D. Hobart, T.J. Anderson, T.I. Feygelson, B.B. Pate, M. Kuball, Acta Mater. 103 (2016) 141-152.
[7] G. Chang, F.Y. Sun, J.L. Duan, Z.F. Che, X.T. Wang, J. Wang, J.G. Wang, M.J. Kim, H.L. Zhang, Acta Mater. 160 (2018) 235-246.
doi: 10.1016/j.actamat.2018.09.004
[8] C.J.H. Wort, R.S. Balmer, Mater. Today 11 (2008) 22-28.
[9] L. Weber, R. Tavangar, Scr. Mater. 57 (2007) 988-991.
doi: 10.1016/j.scriptamat.2007.08.007
[10] Y.P. Wu, J.B. Luo, Y. Wang, G.L. Wang, H. Wang, Z.Q. Yang, G.F. Ding, Ceram. Int. 45 (2019) 13225-13234.
doi: 10.1016/j.ceramint.2019.04.008
[11] G. Chang, F.Y. Sun, L.H. Wang, Z.X. Che, X.T. Wang, J.G. Wang, M.J. Kim, H.L. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 26507-26517.
pmid: 31283161
[12] L.H. Wang, J.W. Li, M. Catalano, G.Z. Bai, N. Li, J.J. Dai, X.T. Wang, H.L. Zhang, J. G. Wang, M.J. Kim, Compos. Part A-Appl. Sci. Manuf. 113 (2018) 76-82.
doi: 10.1016/j.compositesa.2018.07.023
[13] G.Z. Bai, L.H. Wang, Y.J. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, H.L. Zhang, Mater. Charact. 152 (2019) 265-275.
doi: 10.1016/j.matchar.2019.04.015
[14] T. Schubert, Ł. Ciupi´nski, W. Zieli´nski, A. Michalski, T. Weißgärber, B. Kieback, Scr. Mater. 58 (2008) 263-266.
[15] J.W. Li, X.T. Wang, Y. Qiao, Y. Zhang, Z.B. He, H.L. Zhang, Scr. Mater. 109 (2015) 72-75.
[16] G.Z. Bai, Y.J. Zhang, J.J. Dai, L.H. Wang, X.T. Wang, J.G. Wang, M.J. Kim, X.Z. Chen, H.L. Zhang, J. Alloys. Compd. 794 (2019) 473-481.
doi: 10.1016/j.jallcom.2019.04.252
[17] J.W. Li, H.L. Zhang, L.H. Wang, Z.F. Che, Y. Zhang, J.G. Wang, M.J. Kim, X.T. Wang, Compos. Part A-Appl. Sci. Manuf. 91 (2016) 189-194.
[18] G.Z. Bai, N. Li, X.T. Wang, J.G. Wang, M.J. Kim, H.L. Zhang, J. Alloys. Compd. 735 (2018) 1648-1653.
[19] C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, Y. Feng, L. Zhang, Surf. Coat. Technol. 277 (2015) 299-307.
[20] J.Q. Sang, W.L. Yang, J.J. Zhu, L.C. Fu, D.Y. Li, L.P. Zhou, J. Alloys. Compd. 740 (2018) 1060-1066.
doi: 10.1016/j.jallcom.2018.01.078
[21] V.M. das Chagas, M.P. PeÇ anha, R. da Silva Guimarães, A.A.A. dos Santos, M.G. de Azevedo, M. Filgueira, J. Alloys. Compd. 791 (2019) 438-444.
[22] H.J. Cho, Y.J. Kim, U. Erb, Compos. B-Eng. 155 (2018) 197-203.
[23] S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He, X.H. Qu, Compos. Sci. Technol. 71 (2011) 1550-1555.
[24] Y.H. Sun, C. Zhang, L.K. He, Q.N. Meng, B.C. Liu, K. Gao, J.H. Wu, Sci. Rep. 8 (2018) 11104.
doi: 10.1038/s41598-018-29510-7 pmid: 30038427
[25] S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, L.Y. Ma, Appl. Surf. Sci. 402 (2017) 372-383.
[26] Y.P. Pan, X.B. He, S.B. Ren, M. Wu, X.H. Qu, J. Mater. Sci. 53 (2018) 8978-8988.
[27] J. Grzonka, M.J. Kruszewski, M. Rosi´nski, Ł. Ciupi´nski, A. Michalski, K.J. Kurzydłowski, Mater. Charact. 99 (2015) 188-194.
[28] Q.P. Kang, X.B. He, S.B. Ren, L. Zhang, M. Wu, C.Y. Guo, W. Cui, X.H. Qu, Appl. Therm. Eng. 60 (2013) 423-429.
[29] X.Z. Wu, L.Y. Li, W. Zhang, M.X. Song, W.L. Yang, K. Peng, Diam. Relat. Mater. 98 (2019), 107467.
[30] N. Mehra, L.W. Mu, T. Ji, X.T. Yang, J. Kong, J.W. Gu, J.H. Zhu, Appl. Mater. Today 12 (2018) 92-130.
[31] S.V. Kidalov, F.M. Shakhov, Materials 2 (2009) 2467-2495.
[32] X.Y. Shen, X.B. He, S.B. Ren, H.M. Zhang, X.H. Qu, J. Alloys. Compd. 529 (2012) 134-139.
doi: 10.1016/j.jallcom.2012.03.045
[33] J.W. Li, H.L. Zhang, Y. Zhang, Z.F. Che, X.T. Wang, J. Alloys. Compd. 647 (2015) 941-946.
[34] Y.H. Dong, R.Q. Zhang, X.B. He, Z.G. Ye, X.H. Qu, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 177 (2012) 1524-1530.
doi: 10.1016/j.mseb.2012.08.009
[35] H. Bai, N.G. Ma, J. Lang, C.X. Zhu, J. Alloys. Compd. 580 (2013) 382-385.
[36] H. Bai, N.G. Ma, J. Lang, C.X. Zhu, Y. Ma, Compos. B-Eng. 52 (2013) 182-186.
doi: 10.1016/j.compositesb.2013.04.017
[37] K. Chu, Z.F. Liu, C.C. Jia, H. Chen, X.B. Liang, W.J. Gao, W.H. Tian, H. Guo, J. Alloys. Compd. 490 (2010) 453-458.
[38] H. Chen, C.C. Jia, S.J. Li, J. Mater. Sci. 47 (2012) 3367-3375.
[39] F. Yang, W. Sun, A. Singh, L. Bolzoni, JOM 70 (2018) 2243-2248.
[40] F. Yang, Y. Su, S.Q. Jia, Q.Y. Zhao, L. Bolzoni, T. Li, M. Qian, JOM 71 (2019) 4867-4871.
[41] J.H. Richardson, J. Am. Ceram. Soc. 48 (1965) 497-499.
[42] S.H. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 544 (2017) 460-464.
doi: 10.1038/nature22032 pmid: 28397822
[43] B.L. Bramfitt, Metall. Mater. Trans. B. 1 (1970) 1987-1995.
[44] Yf. Zhao, Z. Qian, X. Ma, H.W. Chen, T. Gao, Y.Y. Wu, X.F. Liu, ACS Appl. Mater. Interfaces 8 (2016) 28194-28201.
pmid: 27673431
[45] L. Jiang, H.M. Wen, H. Yang, T. Hu, T. Topping, D.L. Zhang, E.J. Lavernia, J.M. Schoenung, Acta Mater. 89 (2015) 327-343.
[46] C. Monachon, L. Weber, C. Dames, Annu. Rev. Mater. Res. 46 (2016) 433-463.
doi: 10.1146/annurev-matsci-070115-031719
[47] Y. Zhang, J.W. Li, L.L. Zhao, H.L. Zhang, X.T. Wang, Mater. Des. 63 (2014) 838-847.
[48] K. Chu, C.C. Jia, X.B. Liang, H. Chen, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 17 (2010) 234-240.
[49] C. Xue, J.K. Yu, Surf. Coat. Technol. 217 (2013) 46-50.
doi: 10.1016/j.surfcoat.2012.11.070
[50] H.J. Cho, D. Yan, J. Tam, U. Erb, J. Alloys. Compd. 791 (2019) 1128-1137.
[51] K. Yoshida, H. Morigami, Microelectron. Reliab. 44 (2004) 303-308.
[52] K. Raza, F.A. Khalid, T. Mabrouki, Mater. Des. 86 (2015) 248-258.
[53] Y. Zhang, H.L. Zhang, J.H. Wu, X.T. Wang, Scr. Mater. 65 (2011) 1097-1100.
[54] T. Beechem, P.E. Hopkins, J. Appl. Phys. 106 (2009), 124301.
[1] Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 106-117.
[2] Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties[J]. 材料科学与技术, 2020, 42(0): 229-240.
[3] Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites[J]. 材料科学与技术, 2020, 47(0): 45-51.
[4] Yujuan Li, Yingkang Wei, Xiaotao Luo, Changjiu Li, Ninshu Ma. Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits[J]. 材料科学与技术, 2020, 40(0): 185-195.
[5] F.H. Kuang, S.M. Wang, C. Gao, H.B. Zhang, R.K. Ren, J.L. Ren, J. Tong, Y.M. Liu, J. Liu. Unique microstructure and thermal insulation property of a novel waste-utilized foam ceramic[J]. 材料科学与技术, 2020, 48(0): 175-179.
[6] Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy[J]. 材料科学与技术, 2020, 45(0): 133-145.
[7] Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material[J]. 材料科学与技术, 2020, 48(0): 57-62.
[8] Sheng Cao, Qiaodan Hu, Aijun Huang, Zhuoer Chen, Ming Sun, Jiahua Zhang, Chenxi Fu, Qingbo Jia, Chao Voon Samuel Lim, Rodney R.Boyer, Yi Yang, Xinhua Wu. Static coarsening behaviour of lamellar microstructure in selective laser melted Ti-6Al-4V[J]. 材料科学与技术, 2019, 35(8): 1578-1586.
[9] Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yiming Lei, Jie Zhang, Yanchun Zhou. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. 材料科学与技术, 2019, 35(8): 1700-1705.
[10] Decheng Kong, Chaofang Dong, Xiaoqing Ni, Liang Zhang, Jizheng Yao, Cheng Man, Xuequn Cheng, Kui Xiao, Xiaogang Li. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. 材料科学与技术, 2019, 35(7): 1499-1507.
[11] Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, R. Yang. Analysis of local crystallographic orientation in an annealed Ti60 billet[J]. 材料科学与技术, 2019, 35(4): 591-595.
[12] Jiajia Sun, Hejun Li, Liyuan Han, Qiang Song. Enhancing both strength and toughness of carbon/carbon composites by heat-treated interface modification[J]. 材料科学与技术, 2019, 35(3): 383-393.
[13] Jinliang Zhang, Bo Song, Qingsong Wei, Dave Bourell, . A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. 材料科学与技术, 2019, 35(2): 270-284.
[14] Yuchen Deng, Yaming Zhang, Nanlong Zhang, Qiang Zhi, , Jianfeng Yang. Preparation and characterization of pure SiC ceramics by high temperature physical vapor transport induced by seeding with nano SiC particles[J]. 材料科学与技术, 2019, 35(12): 2756-2760.
[15] Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method for ultrahigh temperature applications[J]. 材料科学与技术, 2019, 35(12): 2778-2784.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.