J. Mater. Sci. Technol. ›› 2021, Vol. 65: 82-88.DOI: 10.1016/j.jmst.2020.05.033
• Research Article • Previous Articles Next Articles
Shuaihang Qiua, Mingliang Lia,*(), Gang Shaoa, Hailong Wanga,*(), Jinpeng Zhua, Wen Liua, Bingbing Fana, Hongliang Xua, Hongxia Lua, Yanchun Zhoub, Rui Zhangc
Received:
2020-03-03
Revised:
2020-05-06
Accepted:
2020-05-13
Published:
2021-02-28
Online:
2021-03-15
Contact:
Mingliang Li,Hailong Wang
About author:
119whl@zzu.edu.cn (H. Wang)Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting[J]. J. Mater. Sci. Technol., 2021, 65: 82-88.
Fig. 1. (a) XRD patterns of ES (Ca,Sr,Ba)ZrO3 prepared at different sintering temperatures and the mixture of starting materials, and (b) tetragonal perovskite crystal structure of (Ca,Sr,Ba)ZrO3.
Materials | a (Å) | b (Å) | c (Å) | α=β=γ (°) | z | Symmetry | Space group | Theoretical density (g/cm3) |
---|---|---|---|---|---|---|---|---|
(Ca,Sr,Ba)ZrO3 | 5.8229 | 5.8229 | 8.2333 | 90 | 4 | Tetrahedral | I4/mcm | 5.42 |
CaZrO3 | 5.7558 | 8.0101 | 5.5929 | 90 | 4 | Orthorhombic | Pnma | 4.62 |
SrZrO3 | 5.8140 | 8.1960 | 5.7920 | 90 | 4 | Orthorhombic | Pnma | 5.46 |
BaZrO3 | 4.1930 | 4.1930 | 4.1930 | 90 | 1 | Cubic | Pm-3m | 6.23 |
Table 1 Crystal structure, lattice parameters and theoretical density of ES (Ca,Sr,Ba)ZrO3 and three constituent zirconates.
Materials | a (Å) | b (Å) | c (Å) | α=β=γ (°) | z | Symmetry | Space group | Theoretical density (g/cm3) |
---|---|---|---|---|---|---|---|---|
(Ca,Sr,Ba)ZrO3 | 5.8229 | 5.8229 | 8.2333 | 90 | 4 | Tetrahedral | I4/mcm | 5.42 |
CaZrO3 | 5.7558 | 8.0101 | 5.5929 | 90 | 4 | Orthorhombic | Pnma | 4.62 |
SrZrO3 | 5.8140 | 8.1960 | 5.7920 | 90 | 4 | Orthorhombic | Pnma | 5.46 |
BaZrO3 | 4.1930 | 4.1930 | 4.1930 | 90 | 1 | Cubic | Pm-3m | 6.23 |
Sintering temperature (°C) | Bulk density (g/cm3) | Relative density (%) |
---|---|---|
1450 | 5.11 | 94.28 |
1500 | 5.28 | 97.42 |
1550 | 5.30 | 97.79 |
Table 2 Bulk densities and relative densities of ES (Ca,Sr,Ba)ZrO3 sintered at different temperatures.
Sintering temperature (°C) | Bulk density (g/cm3) | Relative density (%) |
---|---|---|
1450 | 5.11 | 94.28 |
1500 | 5.28 | 97.42 |
1550 | 5.30 | 97.79 |
Fig. 3. SEM micrographs of the polished surface and the corresponding EDS mapping of ES (Ca,Sr,Ba)ZrO3 sintered at (a) 1450 °C, (b) 1500 °C and (c) 1550 °C.
Fig. 5. HAADF image of grain boundary of triple point and the corresponding EDS mapping and line scanning across the grain boundary of ES (Ca,Sr,Ba)ZrO3 sintered at 1550 °C.
Materials | Relative density (%) | Vickers hardness (GPa) | Thermal conductivity(W K-1 m-1) |
---|---|---|---|
ESC-1550 °C | 97.79 | 10.84 ± 0.33 | 1.466 (31.0 °C) |
ESC-1500 °C | 97.42 | 12.16 ± 0.51 | 1.292 (30.9 °C) |
ESC-1450 °C | 94.28 | 10.24 ± 1.2 | 1.089 (30.6 °C) |
BaZrO3 [ | ∼98 | 11.10 ± 1.9 | — |
SrZrO3 [ | ∼98 | — | — |
SrZrO3 [ | > 95 | 9.20 ± 0.1 | — |
CaZrO3 [ | 97-98 | 8.42 ± 0.11 | — |
CaZrO3 [ | 96.8 | — | — |
Rule of mixture (CaZrO3, SrZrO3, BaZrO3) | — | 9.57 | — |
Table 3 Relative densities, Vickers hardness and room temperature thermal conductivities of ES (Ca,Sr,Ba)ZrO3, BaZrO3, SrZrO3 and CaZrO3.
Materials | Relative density (%) | Vickers hardness (GPa) | Thermal conductivity(W K-1 m-1) |
---|---|---|---|
ESC-1550 °C | 97.79 | 10.84 ± 0.33 | 1.466 (31.0 °C) |
ESC-1500 °C | 97.42 | 12.16 ± 0.51 | 1.292 (30.9 °C) |
ESC-1450 °C | 94.28 | 10.24 ± 1.2 | 1.089 (30.6 °C) |
BaZrO3 [ | ∼98 | 11.10 ± 1.9 | — |
SrZrO3 [ | ∼98 | — | — |
SrZrO3 [ | > 95 | 9.20 ± 0.1 | — |
CaZrO3 [ | 97-98 | 8.42 ± 0.11 | — |
CaZrO3 [ | 96.8 | — | — |
Rule of mixture (CaZrO3, SrZrO3, BaZrO3) | — | 9.57 | — |
Fig. 6. Comparison of thermal conductivities of ES (Ca,Sr,Ba)ZrO3 sintered at 1450 °C to 1550 °C with those of the three constituent zirconates [48,51] at different temperatures.
Fig. 7. (a) SEM micrograph of the interface between ES (Ca,Sr,Ba)ZrO3 and TiNi, and the corresponding EDS composition analysis on A point of TiNi side and B point of ES (Ca,Sr,Ba)ZrO3 side, (b) SEM image and EDS line scanning across the interface between the TiNi alloy and ES (Ca,Sr,Ba)ZrO3.
[1] | R. Boyer, JOM 60 (2010) 21-24. |
[2] | P. Singh, H. Pungotra, N.S. Kalsi, Mater. Today: Proc. 4 (2017) 8971-8982. |
[3] |
D.Z. Meng, G.Y. Chen, R.L. Zhang, C.H. Li, Key Eng. Mater. 768 (2018) 256-260.
DOI URL |
[4] |
K. Suzuki, Met. Mater. Int. 7 (2001) 587-604.
DOI URL |
[5] |
Z.H. Zhang, J. Frenzel, K. Neuking, G. Eggeler, Mater. Trans. 47 (2006) 661-669.
DOI URL |
[6] |
F. Gomes, H. Puga, J. Barbosa, C.S. Ribeiro, J. Mater. Sci. 46 (2011) 4922-4936.
DOI URL |
[7] |
Y. Oyama, A. Kojima, X. Li, R. Cervera, K. Tanaka, S. Yamaguchi, Solid State Ion. 197 (2011) 1-12.
DOI URL |
[8] |
J. He, C. Wei, S. Wang, D. Meng, X. Lu, H. Wang, C. Li, IOP Conf. Ser.: Mater. Sci. Eng. 117 (2016), 012033.
DOI URL |
[9] |
S. Schafföner, M. Bach, C. Jahn, L. Freitag, C.G. Aneziris, J. Eur. Ceram. Soc. 39 (2019) 4394-4403.
DOI URL |
[10] |
S. Schafföner, C.G. Aneziris, H. Berek, J. Hubálková, B. Rotmann, B. Friedrich, J. Eur. Ceram. Soc. 35 (2015) 1097-1106.
DOI URL |
[11] |
Z. Zhang, F.Y. Xing, M. Zhu, K.L. Zhu, X.G. Lu, G.X. Wu, C.H. Li, Mater. Sci. Forum 765 (2013) 316-320.
DOI URL |
[12] | G.Y. Chen, J. He, D.Z. Meng, G.X. Wu, C.H. Li, X.G. Lu, Mater. Rev. 28 (2014) 112-115. |
[13] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL PMID |
[14] |
Z. Rák, J.P. Maria, D.W. Brenner, Mater. Lett. 217 (2018) 300-303.
DOI URL |
[15] |
J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, P.E. Hopkins, Adv. Mater. 30 (2018), e1805004.
DOI URL PMID |
[16] |
D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, J. Mater. Chem. A 4 (2016) 9536-9541.
DOI URL |
[17] | D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Status Solidi 10 (2016) 328-333. |
[18] | W.C. Hong, F. Chen, Q. Shen, Y.H. Han, W.G. Fahrenholtz, L.M. Zhang, J. Am. Ceram. Soc. 102 (2019) 2228-2237. |
[19] |
S.C. Jiang, T. Hu, J. Gild, N.X. Zhou, J.Y. Nie, M.D. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater. 142 (2018) 116-120.
DOI URL |
[20] |
J. Gild, Y.Y. Zhang, T. Harrington, S.C. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N.X. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6 (2016) 37946.
DOI URL PMID |
[21] |
P.H. Mayrhofer, A. Kirnbauer, P. Ertelthaler, C.M. Koller, Scr. Mater. 149 (2018) 93-97.
DOI URL |
[22] |
Y. Zhang, W.M. Guo, Z.B. Jiang, Q.Q. Zhu, S.K. Sun, Y. You, K. Plucknett, H. Lin, Scr. Mater. 164 (2019) 135-139.
DOI URL |
[23] |
G. Tallarita, R. Licheri, S. Garroni, R. Orrù, G. Cao, Scr. Mater. 158 (2019) 100-104.
DOI URL |
[24] |
H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2404-2408.
DOI URL |
[25] |
H. Chen, Z.F. Zhao, H.M. Xiang, F.Z. Dai, J. Zhang, S.G. Wang, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 38 (2020) 80-85.
DOI URL |
[26] |
B.L. Ye, T.Q. Wen, M.C. Nguyen, L.Y. Hao, C.Z. Wang, Y.H. Chu, Acta Mater. 170 (2019) 15-23.
DOI URL |
[27] |
X.F. Wei, J.X. Liu, F. Li, Y. Qin, Y.C. Liang, G.J. Zhang, J. Eur. Ceram. Soc. 39 (2019) 2989-2994.
DOI URL |
[28] |
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McElfresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, K.S. Vecchio, Acta Mater. 166 (2019) 271-280.
DOI URL |
[29] |
D. Demirskyi, H. Borodianska, T.S. Suzuki, Y. Sakka, K. Yoshimi, O. Vasylkiv, Scr. Mater. 164 (2019) 12-16.
DOI URL |
[30] |
T. Csanadi, E. Castle, M.J. Reece, J. Dusza, Sci. Rep. 9 (2019) 10200.
DOI URL PMID |
[31] | H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.M. Lei, J. Zhang, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 1700-1705. |
[32] |
X.L. Yan, L. Constantin, Y.F. Lu, J.F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101 (2018) 4486-4491.
DOI URL |
[33] |
J. Dusza, P. Švec, V. Girman, R. Sedlák, E.G. Castle, T. Csanádi, A. Kovalčíková, M.J. Reece, J. Eur. Ceram. Soc. 38 (2018) 4303-4307.
DOI URL |
[34] |
E. Castle, T. Csanadi, S. Grasso, J. Dusza, M. Reece, Sci. Rep. 8 (2018) 8609.
DOI URL PMID |
[35] |
B.L. Ye, T.Q. Wen, D. Liu, Y.H. Chu, Corros. Sci. 153 (2019) 327-332.
DOI URL |
[36] |
Z. Zhang, S. Fu, F. Aversano, M. Bortolotti, H.W. Zhang, C.F. Hu, S. Grasso, Ceram. Int. 45 (2019) 9316-9319.
DOI URL |
[37] |
Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2227-2231.
DOI URL |
[38] |
Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2647-2651.
DOI URL |
[39] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wan, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2892-2896.
DOI URL |
[40] |
K.B. Zhang, W.W. Li, J.J. Zeng, T. Deng, B.Z. Luo, H.B. Zhang, X.G. Huang, J. Alloys. Compd. 817 (2020), 153328.
DOI URL |
[41] |
Y. Qin, J.X. Liu, F. Li, X.F. Wei, H.Z. Wu, G.J. Zhang, J. Adv. Ceram. 8 (2019) 148-152.
DOI URL |
[42] |
Y. Dong, K. Ren, Y.H. Lu, Q.K. Wang, J. Liu, Y.G. Wang, J. Eur. Ceram. Soc. 39 (2019) 2574-2579.
DOI URL |
[43] |
A.J. Wright, J. Luo, J. Mater. Sci. 55 (2020) 9812-9827.
DOI URL |
[44] |
M. Biesuz, S. Fu, J. Dong, A.N. Jiang, D.Y. Ke, Q. Xu, D.G. Zhu, M. Bortolotti, M.J. Reece, C.F. Hu, S. Grasso, J. Asian Ceram. Soc. 7 (2019) 127-132.
DOI URL |
[45] |
J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, Y. Ikuhara, Science 311 (2006) 212-215.
DOI URL PMID |
[46] |
Z. Wang, M. Saito, K.P. McKenna, L. Gu, S. Tsukimoto, A.L. Shluger, Y. Ikuhara, Nature 479 (2011) 380-383.
DOI URL PMID |
[47] |
F.Z. Dai, Y.C. Zhou, W. Sun, Acta Mater. 127 (2017) 312-318.
DOI URL |
[48] |
R. Vassen, X.Q. Cao, F. Tietz, D. Basu, D. Stover, J. Am. Ceram. Soc. 83 (2000) 2023-2028.
DOI URL |
[49] |
W. Ma, D.E. Mack, R. Vaßen, D. Stöver, J. Am. Ceram. Soc. 91 (2008) 2630-2635.
DOI URL |
[50] |
M. Dudek, E. Drożdż-Cieśla, J. Alloys. Compd. 475 (2009) 846-854.
DOI URL |
[51] |
P.S. Murti, M.V. Krishnaiah, Mater. Chem. Phys. 31 (1992) 347-350.
DOI URL |
[52] |
F.Z. Dai, B. Wen, Y.J. Sun, H.M. Xiang, Y.C. Zhou, J. Mater. Sci. Technol. 43 (2020) 168-174.
DOI URL |
[53] |
P.G. Klemens, Phys. Rev. 119 (1960) 507-509.
DOI URL |
[54] | Z. Zhang, K.L. Zhu, L.J. Liu, X.G. Lu, G.X. Wu, C.H. Li, J. Chin, Ceram. Soc. 41 (2013) 1278-1283. |
[1] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[2] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[3] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[4] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[5] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[6] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[7] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[8] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[9] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[10] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[11] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[12] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[13] | Lin Chen, Mingyu Hu, Jun Guo, Xiaoyu Chong, Jing Feng. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase [J]. J. Mater. Sci. Technol., 2020, 52(0): 20-28. |
[14] | H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process [J]. J. Mater. Sci. Technol., 2020, 36(0): 50-54. |
[15] | Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 106-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||