J. Mater. Sci. Technol. ›› 2021, Vol. 65: 89-98.DOI: 10.1016/j.jmst.2020.03.087
• Research Article • Previous Articles Next Articles
Weidan Ma, Jun Zhang*(), Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu
Received:
2020-02-06
Revised:
2020-03-24
Accepted:
2020-03-24
Published:
2021-02-28
Online:
2021-03-15
Contact:
Jun Zhang
About author:
* E-mail address: zhjscott@nwpu.edu.cn (J. Zhang).Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates[J]. J. Mater. Sci. Technol., 2021, 65: 89-98.
Fig. 1. Microstructure map for Al2O3/GAP eutectic ceramics with the Gd2O3 composition of 19-28 mol% at different solidification rates (CS and CR are the abbreviations of “Chinese script” and complex regular, respectively).
Fig. 4. Solid-liquid interface morphologies of (a) AG20 (d) AG28 at 100 μm/s, and microstructures of AG20 (b) in quenching area and (c) in the as-solidified area.
Parameter | α(Al2O3) | β(GAP) | References |
---|---|---|---|
Eutectic temperature, Te (K) | 2015 | [ | |
Liquidus slope, m (K/mol%) | -13.57 | 12.11 | [ |
Equilibrium partition coefficient, k | 0 | 0 | [ |
Gibbs-Thomson coefficient, Γ (m K) | 2.53 × 10-7 | 3 × 10-7 | [ |
Solute diffusion coefficient, DL(m2/s) | 6 × 10-10 | [ | |
Temperature gradient, G (K/m) | 5.3 × 105 | [ |
Table 1 Parameters for calculating the coupled zone of Al2O3/GAP eutectic system: α=Al2O3 and β=GAP.
Parameter | α(Al2O3) | β(GAP) | References |
---|---|---|---|
Eutectic temperature, Te (K) | 2015 | [ | |
Liquidus slope, m (K/mol%) | -13.57 | 12.11 | [ |
Equilibrium partition coefficient, k | 0 | 0 | [ |
Gibbs-Thomson coefficient, Γ (m K) | 2.53 × 10-7 | 3 × 10-7 | [ |
Solute diffusion coefficient, DL(m2/s) | 6 × 10-10 | [ | |
Temperature gradient, G (K/m) | 5.3 × 105 | [ |
Fig. 5. Theoretical predictions of the interface temperature of dendrite and eutectic for (a) AG25, (b) AG26 and (c) AG20, as well as the microstructures of each ceramics at certain solidification rates.
Fig. 7. (a) The stress-strain curves and (b) the average flexural strengths of Al2O3/GAP eutectic ceramics with different compositions and solidification rates, where the fracture morphologies of specimens are included, and (c, d) the relationship between the average flexural strength and the characteristic length (colony diameter and eutectic spacing).
Fig. 9. Weibull plots of the flexural strength of AG19, AGE and AG26, where Pf and σf stand for the failure probability and the flexural strength in MPa, respectively.
[1] |
Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, Y. Kohtoku, Nature 389 (1997) 49-52.
DOI URL |
[2] |
H. Su, Q. Ren, J. Zhang, K. Wei, B. Yao, W. Ma, G. Fan, M. Guo, L. Liu, H. Bai, J. Eur. Ceram. Soc. 37 (2017) 1617-1626.
DOI URL |
[3] |
M.C. Mesa, S. Serrano-Zabaleta, P.B. Oliete, A. Larrea, J. Eur. Ceram. Soc. 34 (2014) 2071-2080.
DOI URL |
[4] |
L. Mazerolles, L. Perriere, S. Lartigue-Korinek, M. Parlier, J. Eur. Ceram. Soc. 31 (2011) 1219-1225.
DOI URL |
[5] |
P.B. Oliete, M.C. Mesa, R.I. Merino, V.M. Orera, Sol. Energy Mater. Sol. C 144 (2016) 405-410.
DOI URL |
[6] |
J.Y. Pastor, J. Llorca, A. Salazar, P.B. Oliete, I. de Francisco, J.I. Peña, J. Am. Ceram. Soc. 88 (2005) 1488-1495.
DOI URL |
[7] |
X. Wang, N. Zhang, Y. Zhong, B. Jiang, L. Lou, J. Zhang, J. Wang, J. Mater. Sci. Technol. 35 (2019) 1982-1988.
DOI URL |
[8] |
M.C. Mesa, P.B. Oliete, J.Y. Pastor, A. Martín, J. Llorca, J. Eur. Ceram. Soc. 34 (2014) 2081-2087.
DOI URL |
[9] |
P.B. Oliete, J.I. Pe˜na, A. Larrea, V.M. Orera, J. Llorca, J.Y. Pastor, A. Martín, J. Segurado, Adv. Mater. 19 (2007) 2313-2318.
DOI URL |
[10] |
J.Y. Pastor, J. Llorca, P. Poza, I. de Francisco, R.I. Merino, J.I. Peña, J. Eur. Ceram. Soc. 25 (2005) 1215-1223.
DOI URL |
[11] |
I.S. Medeiros, E.R.M. Andreeta, A.C. Hernandes, J. Mater. Sci. 42 (2007) 3874-3877.
DOI URL |
[12] |
M.C. Mesa, P.B. Oliete, V.M. Orera, J.Y. Pastor, A. Martín, J. Llorca, J. Eur. Ceram. Soc. 31 (2011) 1241-1250.
DOI URL |
[13] |
A. Yoshikawa, K. Hasegawa, J. Lee, S. Durbin, B. Epelbaum, D. Yoon, T. Fukuda, Y. Waku, J. Cryst. Growth 218 (2000) 67-73.
DOI URL |
[14] | W. Kurz, D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications Ltd, Switzerland, 1998. |
[15] |
Y. Mizutani, H. Yasuda, I. Ohnaka, N. Maeda, Y. Waku, J. Cryst. Growth 244 (2002) 384-392.
DOI URL |
[16] |
Q. Ren, H. Su, J. Zhang, G. Fan, W. Ma, H. Liu, M. Guo, L. Liu, H. Fu, J. Eur. Ceram. Soc. 39 (2019) 1900-1908.
DOI URL |
[17] |
L. Perrière, R. Valle, N. Carrère, G. Gouadec, P. Colomban, S. Lartigue-Korinek, L. Mazerolles, M. Parlier, J. Eur. Ceram. Soc. 31 (2011) 1199-1210.
DOI URL |
[18] |
N. Nakagawa, H. Ohtsubo, A. Mitani, K. Shimizu, Y. Waku, J. Eur. Ceram. Soc. 25 (2005) 1251-1257.
DOI URL |
[19] |
W. Ma, H. Su, J. Zhang, Q. Ren, H. Liu, E. Wang, J. Ren, Z. Lu, L. Liu, H. Fu, J. Am. Ceram. Soc. 101 (2018) 3337-3346.
DOI URL |
[20] |
W. Ma, J. Zhang, H. Su, G. Fan, Q. Ren, Z. Shen, M. Guo, L. Liu, H. Fu, J. Eur. Ceram. Soc. 39 (2019) 3837-3842.
DOI URL |
[21] |
Y.H. Han, M. Nagata, N. Uekawa, K. Kakegawa, Brit. Ceram. Trans. 103 (2004) 219-222.
DOI URL |
[22] |
P. Wu, A.D. Pelton, J. Alloys. Compd. 179 (1992) 259-287.
DOI URL |
[23] |
J. Llorca, V.M. Orera, Prog. Mater. Sci. 51 (2006) 711-809.
DOI URL |
[24] | C.S.G.T. Europe, Pure Substances Part 1 Elements and Compounds From AgBr to Ba3N2, Springer, Berlin Heidelberg, Heidelberg, Berlin, 1999, pp. 201-224. |
[25] |
K.A. Jackson, J. Cryst. Growth 264 (2004) 519-529.
DOI URL |
[26] |
E.R.M. Andreeta, M.R.B. Andreeta, A.C. Hernandes, J. Cryst. Growth 234 (2002) 782-785.
DOI URL |
[27] |
L. Fu, X. Fu, G. Chen, W. Han, W. Zhou, Scr. Mater. 129 (2017) 20-24.
DOI URL |
[28] |
G. Fan, H. Su, J. Zhang, M. Guo, H. Yang, H. Liu, E. Wang, L. Liu, H. Fu, Ceram. Int. 44 (2018) 17978-17985.
DOI URL |
[29] |
Q. Ren, H. Su, J. Zhang, H. Liu, D. Zhao, G. Fan, M. Guo, L. Liu, H. Fu, Scr. Mater. 162 (2019) 49-53.
DOI URL |
[30] |
H. Dong, Y.Z. Chen, K. Wang, G.B. Shan, Z.R. Zhang, K. Huang, F. Liu, Scr. Mater. 177 (2020) 123-127.
DOI URL |
[31] |
H. Jones, Scr. Mater. 45 (2001) 177-182.
DOI URL |
[32] |
W. Kurz, B. Giovanola, R. Trivedi, Acta Metall. 34 (1986) 823-830.
DOI URL |
[33] |
W. Kurz, D.J. Fisher, Int. Met. Rev. 24 (1979) 177-204.
DOI URL |
[34] |
E. Guzik, D. Kopyci´nski, Metall. Mater. Trans. A 37 (2006) 3057-3067.
DOI URL |
[35] |
C. Cui, J. Zhang, T. Xue, L. Liu, H. Fu, J. Mater. Sci. Technol. 31 (2015) 280-284.
DOI URL |
[36] | J. Gong, Fracture Mechanics of Ceramics, Tsinghua University Press, Beijing, 2001. |
[1] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[2] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[3] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[4] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[5] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[6] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[7] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[8] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[9] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[10] | Yuanhao Dong, Sansan Shuai, Tianxiang Zheng, Jiawei Cao, Chaoyue Chen, Jiang Wang, Zhongming Ren. In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging [J]. J. Mater. Sci. Technol., 2020, 39(0): 113-123. |
[11] | Wonjoo Lee, Yuhyeong Jeong, Jae-Wook Lee, Howon Lee, Seong-hoon Kang, Young-Min Kim, Jonghun Yoon. Numerical simulation for dendrite growth in directional solidification using LBM-CA (cellular automata) coupled method [J]. J. Mater. Sci. Technol., 2020, 49(0): 15-24. |
[12] | Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification [J]. J. Mater. Sci. Technol., 2020, 38(0): 19-27. |
[13] | Xuchen Yin, Jianrong Liu, Qingjiang Wang, Lei Wang. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method [J]. J. Mater. Sci. Technol., 2020, 48(0): 36-43. |
[14] | Kuiliang Zhang, Yingju Li, Yuansheng Yang. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169 [J]. J. Mater. Sci. Technol., 2020, 48(0): 9-17. |
[15] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||