J. Mater. Sci. Technol. ›› 2021, Vol. 66: 91-96.DOI: 10.1016/j.jmst.2020.03.090
• Research Article • Previous Articles Next Articles
Ying Niua,1, Yue Wanga,1, Long Houa,*(), Lansong Baa, Yanchao Daia, Yves Fautrelleb, Zongbin Lic, Zhongming Rena, Xi Lia,b,*(
)
Received:
2020-02-20
Revised:
2020-03-21
Accepted:
2020-03-23
Published:
2021-03-10
Online:
2021-04-01
Contact:
Long Hou,Xi Li
About author:
lx_net@sina.com (X. Li).1These authors contributed equally to this work.
Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression[J]. J. Mater. Sci. Technol., 2021, 66: 91-96.
Specimen | Component (at.%) | Growth rate (μm/s) | Microstructure |
---|---|---|---|
A | Ni54Mn24Ga22 | 5 | Single martensite |
B1 | Ni58Mn25Ga17 | 5 | Net -like γ/martensite mixed |
B2 | Ni58Mn25Ga17 | 5 | Lamella γ/martensite mixed |
Table 1 Conditions of composition and microstructure for the directionally solidified specimens.
Specimen | Component (at.%) | Growth rate (μm/s) | Microstructure |
---|---|---|---|
A | Ni54Mn24Ga22 | 5 | Single martensite |
B1 | Ni58Mn25Ga17 | 5 | Net -like γ/martensite mixed |
B2 | Ni58Mn25Ga17 | 5 | Lamella γ/martensite mixed |
Fig. 2. Typical microstructure, SAED patterns and composition of γ phase and NM martensitic plates of Ni58Mn25Ga17 alloy observed by TEM: (a) the bright-field image of martensitic plates, (b) the bright-field image and SAED patterns of martensitic nanotwins inside a martensitic plate, (c) the bright-field image and SAED pattern of γ phase, and (d) the compositions of different positions containing martensite and γ phase.
Fig. 3. Optical micrographs and the orientation images (IPF mode) of the transverse sections corresponding to different samples: (a1) and (a2) specimen A with single martensite, (b1) and (b2) specimen B1 with net-like γ/martensite mixed structure, (c1) and (c2) specimen B2 with lamella γ/martensite mixed structure; and (d) the cutting sketch map of the specimen B2 along transverse direction perpendicular to solidification direction.
Fig. 4. Mechanical properties of the specimens A, B1, and B2 obtained by compression along axial direction of the columnar specimen: (a) compressive stress-strain curves; (b) step-wise compression cycles with cumulative compression values of 5% and 10%, respectively.
Fig. 5. Orientation images (IPF mode) of the magnified transverse sections corresponding to different specimens: (a1)-(a3) specimen A, (b1)-(b3) specimen B1, and (c1)-(c3) specimen B2 after each step-wise compression cycle: (a1)-(c1) 0%, (a2)-(c2) 5%, and (a3)-(c3) 10%.
Specimen | A | B1 | B2 | |||
---|---|---|---|---|---|---|
Variants | t12 | t34 | t12 | t34 | t12 | t34 |
Schmid factor | 0.1511 | 0.4103 | 0.3214 | 0.4255 | 0.1511 | 0.2499 |
Deformation gradient tensor (${{\varepsilon }_{\text{zz}}}$) | 0.9389 | 0.9371 | 0.9563 | 0.9381 | 1.0038 | 0.9563 |
Table 2 Schmid factors and deformation gradient tensors of specimens A, B1 and B2 before compression corresponding to several typical martensite variants as shown in Figs. S1 (a1-f1) in Supporting Information.
Specimen | A | B1 | B2 | |||
---|---|---|---|---|---|---|
Variants | t12 | t34 | t12 | t34 | t12 | t34 |
Schmid factor | 0.1511 | 0.4103 | 0.3214 | 0.4255 | 0.1511 | 0.2499 |
Deformation gradient tensor (${{\varepsilon }_{\text{zz}}}$) | 0.9389 | 0.9371 | 0.9563 | 0.9381 | 1.0038 | 0.9563 |
[1] |
D.C. Dunand, P. Müllner, Adv. Mater. 23 (2011) 216-232.
DOI URL PMID |
[2] | A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80 (2002) 1746-1748. |
[3] | S.H. Guo, Y.H. Zhang, J.L. Li, B.Y. Quan, Y. Qi, X.L. Wang, J. Mater. Sci. Technol. 21 (2005) 211-214. |
[4] | M.A. Marioni, R.C. O’Handley, S.M. Allen, S.R. Hall, D.I. Paul, M.L. Richard, J. Feuchtwanger, B.W. Peterson, J.M. Chambers, R. Techapiesancharoenkij, J. Magn. Magn. Mater. 290-291 (2005) 35-41. |
[5] | F.X. Wang, W.J. Li, Q.X. Zhang, C.X. Li, X.J. Wu, J. Mater. Sci. Technol. 22 (2006) 55-58. |
[6] | H.B. Xu, Y.Q. Ma, C.B. Jiang, Appl. Phys. Lett. 82 (2003) 3206-3208. |
[7] | Y. Li, Y. Xin, C.B. Jiang, H.B. Xu, Scr. Mater. 51 (2004) 849-852. |
[8] | Y.Q. Ma, C.B. Jiang, Y. Li, H.B. Xu, C.P. Wang, X.J. Liu, Acta Mater. 55 (2007) 1533-1541. |
[9] | E. Cesari, J. Font, J. Muntasell, P. Ochin, J. Pons, R. Santamart, Scr. Mater. 58 (2008) 259-262. |
[10] | I.K. Zasimchuk, V.V. Kokorin, V.V. Martynov, A.V. Tkachenko, V.A. Chernenko, Phys. Met. Metallogr. 69 (1990) 104-108. |
[11] | V.V. Kokorin, V.V. Martynov, Phys. Met. Metallogr. 72 (1991) 101-108. |
[12] | V.A. Chernenko, J. Pons, C. Seguí, E. Cesari, Acta Mater. 50 (2002) 53-60. |
[13] | H.B. Xu, Y. Li, C.B. Jiang, Mater. Sci. Eng. A 438-440 (2006) 1065-1070. |
[14] | Y. Xin, Y. Li, L. Chai, H.B. Xu, Scr. Mater. 57 (2007) 599-601. |
[15] | Y.Q. Ma, C.B. Jiang, G. Feng, H.B. Xu, Scr. Mater. 48 (2003) 365-369. |
[16] | V.A. Chernenko, V. L’vov, J. Pons, E. Cesari, J. Appl. Phys. 93 (2003) 2394-2399. |
[17] | V.A. Chernenko, E. Cesari, V.V. Kokorin, I.N. Vitenko, Scr. Metall. Mater. 33 (1995) 1239-1244. |
[18] | C.B. Jiang, G. Feng, S.K. Gong, H.B. Xu, Mater. Sci. Eng. A 342 (2003) 231-235. |
[19] |
Y. Xin, Y. Li, Z.D. Liu, Scr. Mater. 63 (2010) 35-38.
DOI URL |
[20] |
Y. Xin, Y. Li, Mater. Sci. Eng. A 649 (2016) 254-262.
DOI URL |
[21] |
L. Hou, H. Tong, Y.C. Dai, Y. Fautrelle, R. Moreau, Z.M. Ren, X. Li, Mater. Sci. Technol. 34 (2017) 712-717.
DOI URL |
[22] |
X. Li, Z.M. Ren, Y. Fautrelle, Acta Mater. 54 (2006) 5349-5360.
DOI URL |
[23] |
Y.C. Dai, L. Hou, Y. Fautrelle, Z.B. Li, E. Claude, J. Alloys Compd. 722 (2017) 721-728.
DOI URL |
[24] |
B. Yang, Z.B. Li, Y.D. Zhang, G.W. Qin, C. Esling, O. Perroud, X. Zhao, L. Zuo, Acta Mater. 61 (2013) 6809-6820.
DOI URL |
[25] |
Z.B. Li, N. Xu, Y.D. Zhang, C. Esling, J.M. Raulot, X. Zhao, L. Zuo, Acta Mater. 61 (2013) 3858-3865.
DOI URL |
[26] |
L. Hou, Y.C. Dai, Y. Fautrelle, Z.B. Li, Z.M. Ren, C. Esling, X. Li, Scr. Mater. 134 (2017) 85-90.
DOI URL |
[27] |
L. Hou, Y. Niu, Y.C. Dai, L.S. Ba, Y. Fautrelle, Z.B. Li, B. Yang, C. Esling, X. Li, IUCrJ 6 (2019) 366-372.
DOI URL PMID |
[1] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
[2] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[3] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[4] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[5] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[6] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[7] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[8] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[9] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[10] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[11] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[12] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[13] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[14] | Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding [J]. J. Mater. Sci. Technol., 2020, 43(0): 92-103. |
[15] | Wonjoo Lee, Yuhyeong Jeong, Jae-Wook Lee, Howon Lee, Seong-hoon Kang, Young-Min Kim, Jonghun Yoon. Numerical simulation for dendrite growth in directional solidification using LBM-CA (cellular automata) coupled method [J]. J. Mater. Sci. Technol., 2020, 49(0): 15-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||