J. Mater. Sci. Technol. ›› 2021, Vol. 76: 174-188.DOI: 10.1016/j.jmst.2020.11.007
• Research Article • Previous Articles Next Articles
Patryk Jedrasiak, Hugh Shercliff*()
Received:
2020-05-29
Revised:
2020-08-23
Accepted:
2020-09-22
Published:
2021-06-20
Online:
2020-11-06
Contact:
Hugh Shercliff
About author:
*E-mail address: hrs@eng.cam.ac.uk (H. Shercliff).Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing[J]. J. Mater. Sci. Technol., 2021, 76: 174-188.
Fig. 1. Cylindrical sample in uniaxial compression: (a) original dimensions; (b) ideal homogeneous compression; (c) real case, showing barrelling, due to friction and a temperature gradient.
Fig. 2. Methodology for correcting true stress-strain response: (a) Calculating correction $\Delta \sigma=f(T, \dot{\varepsilon},\varepsilon)$ from initial $\sigma=f(T, \dot{\varepsilon}, \varepsilon)$ input to the FE and the predicted σ(ε); (b) applying correction $\Delta \sigma=f(T, \dot{\varepsilon},\varepsilon)$ to the initial $\sigma=f(T, \dot{\varepsilon}, \varepsilon)$ ; (c) validation of corrected constitutive data.
Fig. 5. Notional true stress-strain curves for Zr-2.5Nb calculated directly from experimental data (solid lines), and the smoothed data fit (dashed lines), at selected nominal ε˙ and T conditions.
Fig. 6. Experimental notional true stress of Zr2.5Nb (solid lines) at a strain of 0.05, with the best fit to the Sellars-Tegart equation (dashed lines).
Qavg (kJ/mol) | σ0 | n | $\dot{\varepsilon}$ (s-1) |
---|---|---|---|
469 | 125 | 5.6 | 6.21 × 1022 |
Table 1 Best-fit parameter values for the Sellars-Tegart Eq. (6), fitted to experimental $\sigma=(T, \dot{\varepsilon})$ data for ε=0.05.
Qavg (kJ/mol) | σ0 | n | $\dot{\varepsilon}$ (s-1) |
---|---|---|---|
469 | 125 | 5.6 | 6.21 × 1022 |
Fig. 7. Projected views of a second order surface fit to log?$\log\sigma=f(T,\log \dot{\varepsilon})$ (dashed lines), compared with experimental notional true stress of Zr2.5Nb (solid lines) at ε = 0.05.
Fig. 8. Flow stress vs. log(strain-rate) experimental data (for strain = 0.05), and the fitted model (dashed lines) extrapolated to lower temperatures and strain-rates.
Fig. 10. Predictions of the FE model using smoothed stress-strain data as input, at Tnominal =750 °C, $\dot{\varepsilon}_{nominal}$ = 0.1 s-1, for selected combinations of friction coefficient and temperature gradient: (a) force vs. displacement; (b) “notional” true stress vs. strain.
Fig. 11. Stress-strain curves used as input to the FE analysis (solid curves) vs. FE predicted output (dashed curves), for nominal temperatures of 700 and 800 °C and strain-rates of: (a) 0.01 s-1; (b) 3.2 s-1.
Fig. 12. Stress correction Δσ for all experimental combinations of temperature T and log(strain rate, $\dot{\varepsilon}$), for strains of: (a) ε = 0.05; (b) ε = 0.5.
Fig. 14. Experimental (smoothed) stress-strain curves, and FE predicted after correction of the input constitutive response, for the same nominal temperatures and strain-rates as Fig. 11.
Fig. 15. FE results obtained with smoothed, corrected stress-strain data at Tnominal =750 °C, $\dot{\varepsilon}_{ nominal }$ = 0.1 s-1, with μ = 0.5 and ΔT = 50 °C: (a) temperature; (b) equivalent plastic strain; (c) von Mises stress; (d) axial strain-rate; (e) radial strain-rate.
Fig. 16. von Mises equivalent plastic strain as a function of temperature and strain-rate, for Tnominal =750 °C, $\dot{\varepsilon}_{ nominal}$ = 0.1s-1 (indicated by the circle), with μ = 0.5 and Δ T = 50 °C.
Fig. 17. FE predicted evolution of von Mises equivalent plastic strain on the sample mid-plane, at the centre and at half the radius, for nominal T =750 °C, $\dot{\varepsilon}$ = 0.1s-1, with μ = 0.5 and ΔT = 50 °C.
Fig. 18. Ratio of the maximum cross-section area to the average cross-section area, as a function of temperature and log(strain rate): (a) experimental data; (b) FE modelling results.
Fig. 19. Processing maps of strain-rate sensitivity m, for ZrNb alloy, calculated from: (a) cubic fit to the raw experimental data; (b) smoothed data corrected using the FE model.
[1] |
H.R. Shercliff, A.M. Lovatt, Philos. Trans. R. Soc. A, 357 (1999), pp. 1621-1643
DOI URL |
[2] |
S.I. Oh, S.L. Semiatin, J.J. Jonas, Metall. Trans. A, 23 (3) (1992), pp. 963-975
DOI URL |
[3] | G.E. Dieter, H.A. Kuhn, S.L. Seminatin (Eds.), Handbook of Workability and Process, Design, ASM International, Materials Park, Ohio (2003), pp. 61-67 |
[4] | T. Instruments, DIL 805A/D/T, https://www.tainstruments.com/dil-805adt-quenching-dilatomers/, 15 May 2020. |
[5] |
B. Roebuck, J.D. Lord, M. Brooks, M.S. Loveday, C.M. Sellars, R.W. Evans, Mater. High Temp., 23 (2) (2006), pp. 59-83
DOI URL |
[6] |
Y.C. Lin, X.M. Chen, Mater. Des., 32 (4) (2011), pp. 1733-1759
DOI URL |
[7] | C. Zener, J.H. Hollomon, J. Appl. Phys., 15 (22) (1944) |
[8] |
C.M. Sellars, W.J. McTegart, Acta Metall., 14 (9) (1966), pp. 1136-1138
DOI URL |
[9] | U.F. Kocks, A.S. Argon, M.F. Ashby, Prog. Mater. Sci., 19 (1975) |
[10] |
L. Briottet, J.J. Jonas, F. Montheillet, Acta Mater., 44 (4) (1996), pp. 1665-1672
DOI URL |
[11] | H.J. Frost, M.F. Ashby, Deformation-mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford(1982) |
[12] |
Y.C. Lin, M.S. Chen, J. Zhong, Comput. Mater. Sci., 42 (2008), pp. 470-477
DOI URL |
[13] |
Y.C. Lin, M.S. Chen, J. Zhong, Mech. Res. Commun., 35 (2008), pp. 142-150
DOI URL |
[14] |
G. Ji, F. Li, Q. Li, H. Li, Z. Li, Mater. Sci. Eng. A, 528 (13-14) (2011), pp. 4774-4782
DOI URL |
[15] |
Y.C. Lin, Y.C. Xia, X.M. Chen, M.S. Chen, Comput. Mater. Sci., 50 (1) (2010), pp. 227-233
DOI URL |
[16] |
C. Liao, H. Wu, S. Lee, F. Zhu, H. Liu, C. Wu, Mater. Sci. Eng. A, 565 (2013), pp. 1-8
DOI URL |
[17] |
P. Geng, G. Qin, J. Zhou, Z. Zou, J. Manuf. Process., 32 (2018), pp. 469-481
DOI URL |
[18] |
J. Cai, F. Li, T. Liu, B. Chen, M. He, Mater. Des., 32 (3) (2011), pp. 1144-1151
DOI URL |
[19] |
Y. Hong, X. Cheng, G. Xiao, Y. Guo, Mater. Sci. Eng. A, 528 (21) (2011), pp. 6510-6518
DOI URL |
[20] |
S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Mater. Sci. Eng. A, 500 (1-2) (2009), pp. 114-121
DOI URL |
[21] |
G. Ji, F. Li, Q. Li, H. Li, Z. Li, Mater. Sci. Eng. A, 528 (2011), pp. 4774-4782
DOI URL |
[22] | G.R. Johnson, W.H. Cook, Proceedings of the 7th International Symposium on Ballistics, The Hague, April 19-21 (1983), pp. 541-547 |
[23] | P. Jedrasiak, H.R. , Shercliff Finite Element Modelling of Small-Scale Hot Deformation Testing, CUED Technical Report, CUED/C-MATS/TR264, Cambridge (2019) |
[24] | K.M. Kulkarni, S. Kalpakjian, J. Inst. Eng., 91 (3) (1969), pp. 743-754 |
[25] |
S.I. Oh, S.L. Semiatin, J.J. Jonas, Metall. Trans. A, 23 (1992), pp. 963-975
DOI URL |
[26] |
J. Appa Rao, J. Babu Rao, S. Kamaluddin, M.M.M. Sarcar, N.R.M.R. Bhargava, Mater. Des., 30 (2009), pp. 2143-2151
DOI URL |
[27] | B. Zhou, Y. Shen, J. Chen, Z. Cui, J. Iron Steel Res. Int., 18 (1) (2011), pp. 41-48 |
[28] |
J. Majta, J.G. Lenard, M. Pietrzyk, Mater. Sci. Eng. A, 208 (1996), pp. 249-259
DOI URL |
[29] |
H. Monajati, A.K. Taheri, M. Jahazi, S. Yue, Metall. Mater. Trans. A, 36 (2005), pp. 895-905
DOI URL |
[30] |
R. Ebrahimi, A. Najafizadeh, J. Mater. Process. Technol., 152 (2004), pp. 136-143
DOI URL |
[31] | Y.P. Li, H. Matsumoto, A. Chiba, Metall. Mater. Trans. A, 40A (2009), pp. 1203-1209 |
[32] |
Y. Li, E. Onodera, A. Chiba, Mater. Trans., 51 (7) (2010), pp. 1210-1215
DOI URL |
[33] |
Y.P. Li, E. Onodera, H. Matsumoto, A. Chiba, Metall. Mater. Trans. A, 40 (2009), pp. 982-990
DOI URL |
[34] |
R.L. Goetz, S.L. Semiatin, J. Mater. Eng. Perform., 10 (6) (2001), pp. 710-717
DOI URL |
[35] |
Y.P. Li, E. Onodera, H. Matsumoto, Y. Koizumi, S. Yu, A. Chiba, ISIJ Int., 51 (5) (2011), pp. 782-787
DOI URL |
[36] | M.C. Mataya, V.E. Sackschewsky, Metall. Mater. Trans. A, 25A (1994), pp. 2737-2752 |
[37] |
E. Parteder, R. Bunten, J. Mater. Process. Technol., 74 (1998), pp. 227-233
DOI URL |
[38] |
L. Xinbo, Z. Fubao, Z. Zhiliang, J. Mater. Process. Technol., 120 (1-3) (2002), pp. 144-150
DOI URL |
[39] |
X. Wang, H. Li, K. Chandrashekhara, S.A. Rummel, S. Lekakh, D.C. Van Aken, J. Mater. Process. Technol., 243 (2017), pp. 465-473
DOI URL |
[40] |
H. Cho, G. Ngalle, T. Altan, CIRP Ann., 52 (1) (2003), pp. 221-224
DOI URL |
[41] |
D.J. Yu, D.S. Xu, H. Wang, Z.B. Zhao, G.Z. Wei, R. Yang, J. Mater. Sci. Technol., 35 (2019), pp. 1039-1043
DOI |
[42] | P. Jedrasiak, H.R. Shercliff, Modelling of thermal field and inhomogeneous deformation in hot compression of titanium alloys (unpublished work). |
[43] | C.S. Daniel, P. Jedrasiak, C.J. Peyton, Manchester, May 20-23 (2019) |
[44] | C. Peyton, Generating and Evaluating the Strain Rate Sensitivity Processing Maps for Zr-2.5Nb, Thesis University of Manchester (2018) |
[45] | ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (10th ed.), ASM International, Ohio (1990) |
[46] | F. Cardarelli, Materials Handbook (2nd ed.),Springer-Verlag, London (2008) |
[47] |
C. Herzig, U. Kohler, S.V. Divinski, J. Appl. Phys., 85 (12) (1999), pp. 8119-8130
DOI URL |
[48] | C.S. Daniel, An Investigation Into the Texture Development During Hot-rolling of Dual-phase Zirconium Alloys, Eng.D. Thesis University of Manchester (2018) |
[1] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[2] | Xiaochun He, Yang Li, Yongjie Bi, Xiaomei Liu, Bing Zhou, Shangzhou Zhang, Shujun Li. Finite element analysis of temperature and residual stress profiles of porous cubic Ti-6Al-4V titanium alloy by electron beam melting [J]. J. Mater. Sci. Technol., 2020, 44(0): 191-200. |
[3] | Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling [J]. J. Mater. Sci. Technol., 2020, 43(0): 220-229. |
[4] | Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 149-163. |
[5] | Beibei Jiang, Donghui Wen, Qing Wang, Jinda Che, Chuang Dong, Peter K. Liaw, Fen Xu, Lixian Sun. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol., 2019, 35(6): 1008-1016. |
[6] | X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35(5): 824-832. |
[7] | Zhou Xiaochen, Yang Fan, Gong Xiaoyan, Zhao Ming, Zheng Yufeng, Sun Zhili. Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification [J]. J. Mater. Sci. Technol., 2019, 35(11): 2682-2692. |
[8] | , Ji Xiong, Zhixing Guo, Junliu Ye. Design and preparation of gradient graphite/cermets self-lubricating composites [J]. J. Mater. Sci. Technol., 2018, 34(8): 1378-1386. |
[9] | Xiaomei Liu, Hao Cui, Shangzhou Zhang, Haipo Liu, Gaofeng Liu, Shujun Li. Experimental and numerical investigations on fatigue behavior of aluminum alloy 7050-T7451 single lap four-bolted joints [J]. J. Mater. Sci. Technol., 2018, 34(7): 1205-1213. |
[10] | H. Zhou, H.Y. Ning, X.L. Ma, D.D. Yin, L.R. Xiao, X.C. Sha, Y.D. Yu, Q.D. Wang, Y.S. Li. Microstructural evolution and mechanical properties of Mg-9.8Gd-2.7Y-0.4Zr alloy produced by repetitive upsetting [J]. J. Mater. Sci. Technol., 2018, 34(7): 1067-1075. |
[11] | Zhang Li, Wang Qudong, Liao Wenjun, Guo Wei, Ye Bing, Jiang Haiyan, Ding Wenjiang. Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy [J]. J. Mater. Sci. Technol., 2017, 33(9): 935-940. |
[12] | Chen Q., Shu D.Y., Lin J., Wu Y., Xia X.S., Huang S.H., Zhao Z.D., Mishin O.V., Wu G.L.. Evolution of microstructure and texture in copper during repetitive extrusion-upsetting and subsequent annealing [J]. J. Mater. Sci. Technol., 2017, 33(7): 690-697. |
[13] | Chensong Dong. Effects of Process-Induced Voids on the Properties of Fibre Reinforced Composites [J]. J. Mater. Sci. Technol., 2016, 32(7): 597-604. |
[14] | F.Y. Zhou, K.J. Qiu, D. Bian, Y.F. Zheng, J.P. Lin. A Comparative in vitro Study on Biomedical Zre2.5X (X [ Nb, Sn) Alloys [J]. J. Mater. Sci. Technol., 2014, 30(4): 299-306. |
[15] | O.M. Ozkendir, E. Cengiz,E.Tlrasoglu, Mehmet Kaya, I.H. Karahan, N. Orhan. Traces of Defects in the Electronic Structure of Porous Ni–Ti Alloys [J]. J. Mater. Sci. Technol., 2013, 29(4): 344-348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||