|
|
Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites |
X.X. Zhanga, L.H. Wua, H. Andräb, W.M. Ganc, M. Hofmannd, D. Wanga, D.R. Nia, B.L. Xiaoa, Z.Y. Maa?( ) |
aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China bFraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany cGerman Engineering Materials Science Centre, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht, Germany dHeinz Maier-Leibnitz Zentrum (MLZ), Technische Universit&äMünchen, D-85747 Garching, Germany |
|
|
Abstract The effects of welding speed on the macroscopic and microscopic residual stresses (RSes) in friction stir welded 17 vol.% SiCp/2009Al-T4 composite plates were studied via neutron diffraction and an improved decoupled hierarchical multiscale modeling methods. Measurements showed that the macroscopic and total RSes had the largest variations in the longitudinal direction (LD). Increasing the welding speed led to higher values of measured LD macroscopic and total RSes in the matrix. The welding speed also significantly influenced the distributions and magnitudes of the microscopic RSes. The RSes were predicted via an improved hierarchical multiscale model, which includes a constant coefficient of friction based thermal model. The RSes in the composite plates before friction stir welding (FSW) were computed and then set as the initial states of the FSW process during modeling. This improved decoupled multiscale model provided improved predictions of the temperature and RSes compared with our previous model.
|
Received: 11 June 2018
|
Corresponding Authors:
Ma Z.Y.
E-mail: zyma@imr.ac.cn
|
Cite this article:
X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites. J. Mater. Sci. Technol., 2019, 35(5): 824-832.
URL:
https://www.jmst.org/EN/10.1016/j.jmst.2018.11.005 OR https://www.jmst.org/EN/Y2019/V35/I5/824
|
[1] | D.B. Miracle, Compos. Sci. Technol. 65(2005) 2526-2540. | [2] | L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71(2015) 93-168. | [3] | D. Wang, B.L. Xiao, D.R. Ni, Z.Y. Ma, Acta Metall. Sin.(Engl. Lett.) 27(2014)816-824. | [4] | X.X. Zhang, D.R. Ni, B.L. Xiao, H. Andrae, W.M. Gan, M. Hofmann, Z.Y. Ma, ActaMater. 87(2015) 161-173. | [5] | W.C. Jiang, W. Woo, G.B. An, J.U. Park, Mater. Des. 51(2013) 415-420. | [6] | P.J. Withers, Rep. Prog. Phys. 70(2007) 2211-2264. | [7] | M.N. Ilman, M.R. Kusmono, N. Muslih, H. Subeki, Wibowo, Mater. Des. 99(2016) 273-283. | [8] | D.P. Wang, H. Zhang, B.M. Gong, C.Y. Deng, Mater. Des. 91(2016) 211-217. | [9] | W. Woo, H. Choo, M.B. Prime, Z. Feng, B. Clausen, Acta Mater. 56(2008)1701-1711. | [10] | W. Woo, Z. Feng, X.L. Wang, S.A. David, Sci. Technol. Weld. Join. 16(2011)23-32. | [11] | H.J. Aval, Mater. Des. 87(2015) 405-413. | [12] | Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Crit. Rev. Solid State Mater.Sci. 43(2018)269-333. | [13] | M. Schoebel, G. Baumgartner, S. Gerth, J. Bernardi, M. Hofmann, Acta Mater.81(2014) 401-408. | [14] | X.X. Zhang, D. Wang, B.L. Xiao, H. Andrae, W.M. Gan, M. Hofmann, Z.Y. Ma,Mater. Des. 115(2017) 364-378. | [15] | D.R. Ni, D.L. Chen, B.L. Xiao, D. Wang, Z.Y. Ma, Int. J. Fatigue 55 (2013) 64-73. | [16] | D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Des. 51(2013) 199-205. | [17] | D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 608 (2014)1-10. | [18] | D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Mater. Des. 47(2013) 243-247. | [19] | D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, J. Mater. Sci.Technol. 30(2014) 54-60. | [20] | D. Wang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 589 (2014) 271-274. | [21] | M. Hofmann, R. Schneider, G.A. Seidl, J. Rebelo-Kornmeier, R.C. Wimpory, U.Garbe, H.G. Brokmeier, Phys. B 385-386(2006) 1035-1037. | [22] | X.X. Zhang, B.L. Xiao, H. Andrae, Z.Y. Ma, Compos. Struct. 113(2014) 459-468. | [23] | X.X. Zhang, B.L. Xiao, H. Andra, Z.Y. Ma, Compos. Struct. 137(2016) 18-32. | [24] | A. Martin, J. Rodriguez, J. Llorca, Wear 225 (1999) 615-620. | [25] | T.W. Scharf, P.G. Kotula, S.V. Prasad, Acta Mater. 58(2010) 4100-4109. | [26] | M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, H. Shercliff, Metall.Mater. Trans. A 37 (2006) 2183-2193. | [27] | E. Voce, Metallurgica 51 (1955) 219-226. | [28] | X.X. Zhang, B.L. Xiao, H. Andra, Z.Y. Ma, Compos. Struct. 125(2015) 176-187. | [29] | J.C. Simo, T.J.R.NewYork, 1998. | [30] | E.A. de Souza Neto, D. Peri′c, D.R.J. Owen, Computational Methods forPlasticity:Theory and Applications, John Wiley & Sons Ltd, West Sussex, 2008. | [31] | T.I. Zohdi, P. Wriggers, Berlin-Heidelberg, 2005. | [32] | H. Si, TetGen: A Quality Tetrahedral Mesh Generator and Three-dimensionalDelaunay Triangulator, 2018, September 24 . | [33] | C.C. Tutum, J.H. Hattel, Sci. Technol. Weld. Join. 15(2010) 369-377. | [34] | H. Lombard, D.G. Hattingh, A. Steuwer, M.N. James, Mater. Sci. Eng. A 501(2009) 119-124. | [35] | X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 42 (2011) 3229-3239. | [36] | M. Peel, A. Steuwer, M. Preuss, P.J. Withers, Acta Mater. 51(2003) 4791-4801. | [37] | V.M. Linton, M.I. Ripley, Acta Mater. 56(2008) 4319-4327. | [38] | M.Z.H Khandkar, J.A. Khan, A.P. Reynolds, M.A. Sutton, J. Mater. Process.Technol. 174(2006) 195-203. | [39] | A.H. Feng, D.L. Chen, Z.Y. Ma, W.Y. Ma, R.J. Song, Acta Metall. Sin.(Engl. Lett.).27(2014) 723-729. | [40] | Z. Zhang, B.L. Xiao, Z.Y. Ma, Acta Mater. 73(2014) 227-239. | [41] | E. Salvati, A.M. Korsunsky, Int. J. Plast. 98(2017) 123-138. | [42] | E. Maawad, W. Gan, M. Hofmann, V. Ventzke, S. Riekehr, H.G. Brokmeier, N.Kashaev, M. Mueller, Mater. Des. 101(2016) 137-145. |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|