Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (5): 824-832    DOI: 10.1016/j.jmst.2018.11.005
Orginal Article Current Issue | Archive | Adv Search |
Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites
X.X. Zhanga, L.H. Wua, H. Andräb, W.M. Ganc, M. Hofmannd, D. Wanga, D.R. Nia, B.L. Xiaoa, Z.Y. Maa?()
aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
bFraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, Kaiserslautern 67663, Germany
cGerman Engineering Materials Science Centre, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht, Germany
dHeinz Maier-Leibnitz Zentrum (MLZ), Technische Universit&äMünchen, D-85747 Garching, Germany
Download:  HTML  PDF(2676KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of welding speed on the macroscopic and microscopic residual stresses (RSes) in friction stir welded 17 vol.% SiCp/2009Al-T4 composite plates were studied via neutron diffraction and an improved decoupled hierarchical multiscale modeling methods. Measurements showed that the macroscopic and total RSes had the largest variations in the longitudinal direction (LD). Increasing the welding speed led to higher values of measured LD macroscopic and total RSes in the matrix. The welding speed also significantly influenced the distributions and magnitudes of the microscopic RSes. The RSes were predicted via an improved hierarchical multiscale model, which includes a constant coefficient of friction based thermal model. The RSes in the composite plates before friction stir welding (FSW) were computed and then set as the initial states of the FSW process during modeling. This improved decoupled multiscale model provided improved predictions of the temperature and RSes compared with our previous model.

Key words:  Metal-matrix composites (MMCs)      Friction stir welding      Residual/internal stress      Neutron diffraction      Finite element analysis (FEA)      Multiscale simulation     
Received:  11 June 2018     
Corresponding Authors:  Ma Z.Y.     E-mail:  zyma@imr.ac.cn

Cite this article: 

X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites. J. Mater. Sci. Technol., 2019, 35(5): 824-832.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2018.11.005     OR     https://www.jmst.org/EN/Y2019/V35/I5/824

Macro-micro point Coordinates (mm)
T L N
P0 0 150 1.55
P1 2 150 1.55
P2 4 150 1.55
P3 6 150 1.55
P4 8 150 1.55
P5 10 150 1.55
P6 12 150 1.55
P7 22 150 1.55
P8 32 150 1.55
P9 42 150 1.55
Table 1  Coordinates of ten macro-micro points.
Fig. 1  Computational domains used in multiscale modeling [14]: (a) MMC plate, only the right half is modeled. Symmetry boundary conditions are imposed on the symmetry plane for macroscale modeling; (b) unit cell (UC) for microscale modeling.
Fig. 2  Effects of welding speed on temperature fields (a), peak temperature (b) and accumulated plastic strain along the ‘transversal line’ defined in Fig. 1(a) (c).
Fig. 3  Measured and predicted thermal cycles at location P2 for V50 (a) and V150 (b). The previous model in (a) means the multiscale model in the Ref. [14]. The line ABˉ denotes the preservation time td when the temperature is above 250?°C. The measured temperature of V150?in.(b) is from our previous work [14].
Fig. 4  Profiles of L (a), T (b) and N (c) macroscopic RSes cross welds at middle thickness and middle weld length for V50, V100 and V150. The experimental results of V150 are from our previous work [14].
Fig. 5  Effects of welding speed on L macroscopic RS fields.
Fig. 6  Profiles of L, T and N elastic mismatch RSes cross welds at middle thickness and middle weld length for V50, V100 and V150: (a) L, (c) T and (e) N components in 2009Al matrix; (b) L, (d) T and (f) N components in reinforcement. The experimental results of V150 are from our previous work [14].
Fig. 7  Longitudinal elastic mismatch RS fields of matrix and reinforcement at macro-micro point P0 for V50 (a, c) and V150 (b, d).
Fig. 8  Comparison of profiles of thermal misfit residual stress cross welds at middle thickness and middle weld length for V50, V100 and V150: (a) in 2009Al matrix; (b) in reinforcement. The experimental results of V150 are from our previous work [14].
Fig. 9  Longitudinal thermal plus plastic misfit RS fields of matrix and reinforcement at macro-micro point P0 for V50 (a, c) and V150 (b, d).
[1] D.B. Miracle, Compos. Sci. Technol. 65(2005) 2526-2540.
[2] L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71(2015) 93-168.
[3] D. Wang, B.L. Xiao, D.R. Ni, Z.Y. Ma, Acta Metall. Sin.(Engl. Lett.) 27(2014)816-824.
[4] X.X. Zhang, D.R. Ni, B.L. Xiao, H. Andrae, W.M. Gan, M. Hofmann, Z.Y. Ma, ActaMater. 87(2015) 161-173.
[5] W.C. Jiang, W. Woo, G.B. An, J.U. Park, Mater. Des. 51(2013) 415-420.
[6] P.J. Withers, Rep. Prog. Phys. 70(2007) 2211-2264.
[7] M.N. Ilman, M.R. Kusmono, N. Muslih, H. Subeki, Wibowo, Mater. Des. 99(2016) 273-283.
[8] D.P. Wang, H. Zhang, B.M. Gong, C.Y. Deng, Mater. Des. 91(2016) 211-217.
[9] W. Woo, H. Choo, M.B. Prime, Z. Feng, B. Clausen, Acta Mater. 56(2008)1701-1711.
[10] W. Woo, Z. Feng, X.L. Wang, S.A. David, Sci. Technol. Weld. Join. 16(2011)23-32.
[11] H.J. Aval, Mater. Des. 87(2015) 405-413.
[12] Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Crit. Rev. Solid State Mater.Sci. 43(2018)269-333.
[13] M. Schoebel, G. Baumgartner, S. Gerth, J. Bernardi, M. Hofmann, Acta Mater.81(2014) 401-408.
[14] X.X. Zhang, D. Wang, B.L. Xiao, H. Andrae, W.M. Gan, M. Hofmann, Z.Y. Ma,Mater. Des. 115(2017) 364-378.
[15] D.R. Ni, D.L. Chen, B.L. Xiao, D. Wang, Z.Y. Ma, Int. J. Fatigue 55 (2013) 64-73.
[16] D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Des. 51(2013) 199-205.
[17] D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 608 (2014)1-10.
[18] D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Mater. Des. 47(2013) 243-247.
[19] D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, J. Mater. Sci.Technol. 30(2014) 54-60.
[20] D. Wang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 589 (2014) 271-274.
[21] M. Hofmann, R. Schneider, G.A. Seidl, J. Rebelo-Kornmeier, R.C. Wimpory, U.Garbe, H.G. Brokmeier, Phys. B 385-386(2006) 1035-1037.
[22] X.X. Zhang, B.L. Xiao, H. Andrae, Z.Y. Ma, Compos. Struct. 113(2014) 459-468.
[23] X.X. Zhang, B.L. Xiao, H. Andra, Z.Y. Ma, Compos. Struct. 137(2016) 18-32.
[24] A. Martin, J. Rodriguez, J. Llorca, Wear 225 (1999) 615-620.
[25] T.W. Scharf, P.G. Kotula, S.V. Prasad, Acta Mater. 58(2010) 4100-4109.
[26] M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, H. Shercliff, Metall.Mater. Trans. A 37 (2006) 2183-2193.
[27] E. Voce, Metallurgica 51 (1955) 219-226.
[28] X.X. Zhang, B.L. Xiao, H. Andra, Z.Y. Ma, Compos. Struct. 125(2015) 176-187.
[29] J.C. Simo, T.J.R.NewYork, 1998.
[30] E.A. de Souza Neto, D. Peri′c, D.R.J. Owen, Computational Methods forPlasticity:Theory and Applications, John Wiley & Sons Ltd, West Sussex, 2008.
[31] T.I. Zohdi, P. Wriggers, Berlin-Heidelberg, 2005.
[32] H. Si, TetGen: A Quality Tetrahedral Mesh Generator and Three-dimensionalDelaunay Triangulator, 2018, September 24 .
[33] C.C. Tutum, J.H. Hattel, Sci. Technol. Weld. Join. 15(2010) 369-377.
[34] H. Lombard, D.G. Hattingh, A. Steuwer, M.N. James, Mater. Sci. Eng. A 501(2009) 119-124.
[35] X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 42 (2011) 3229-3239.
[36] M. Peel, A. Steuwer, M. Preuss, P.J. Withers, Acta Mater. 51(2003) 4791-4801.
[37] V.M. Linton, M.I. Ripley, Acta Mater. 56(2008) 4319-4327.
[38] M.Z.H Khandkar, J.A. Khan, A.P. Reynolds, M.A. Sutton, J. Mater. Process.Technol. 174(2006) 195-203.
[39] A.H. Feng, D.L. Chen, Z.Y. Ma, W.Y. Ma, R.J. Song, Acta Metall. Sin.(Engl. Lett.).27(2014) 723-729.
[40] Z. Zhang, B.L. Xiao, Z.Y. Ma, Acta Mater. 73(2014) 227-239.
[41] E. Salvati, A.M. Korsunsky, Int. J. Plast. 98(2017) 123-138.
[42] E. Maawad, W. Gan, M. Hofmann, V. Ventzke, S. Riekehr, H.G. Brokmeier, N.Kashaev, M. Mueller, Mater. Des. 101(2016) 137-145.
[1] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[2] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[3] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[4] Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models[J]. 材料科学与技术, 2020, 36(0): 176-189.
[5] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[6] Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study[J]. 材料科学与技术, 2020, 46(0): 21-32.
[7] Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding[J]. 材料科学与技术, 2019, 35(7): 1261-1269.
[8] H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. 材料科学与技术, 2019, 35(7): 1278-1283.
[9] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method[J]. 材料科学与技术, 2019, 35(7): 1412-1421.
[10] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions[J]. 材料科学与技术, 2019, 35(6): 972-981.
[11] Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. 材料科学与技术, 2019, 35(5): 784-789.
[12] M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel[J]. 材料科学与技术, 2019, 35(4): 491-498.
[13] Peng Xue, Simon Pauly, Weimin Gan, Songshan Jiang, Hongbo Fan, Zhiliang Ning, Yongjiang Huang, Jianfei Sun. Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation[J]. 材料科学与技术, 2019, 35(10): 2221-2226.
[14] Zhongwei Ma, Yanye Jin, Shude Ji, Xiangchen Meng, Lin Ma, Qinghua Li. A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding[J]. 材料科学与技术, 2019, 35(1): 94-99.
[15] Chao Zhang, Lei Cui, Yongchang Liu, Chenxi Liu, Huijun Li. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel[J]. 材料科学与技术, 2018, 34(5): 756-766.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.