J. Mater. Sci. Technol. ›› 2021, Vol. 69: 168-179.DOI: 10.1016/j.jmst.2020.08.003
• Research Article • Previous Articles Next Articles
Zihong Wanga,b, Xin Lina,b,*(
), Yao Tanga,b, Nan Kanga,b,*(
), Xuehao Gaoa,b, Shuoqing Shia,b, Weidong Huanga,b
Received:2020-04-07
Revised:2020-06-18
Accepted:2020-06-20
Published:2021-04-10
Online:2021-05-15
Contact:
Xin Lin,Nan Kang
About author:nan.kang@nwpu.edu.cn (N. Kang).Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior[J]. J. Mater. Sci. Technol., 2021, 69: 168-179.
Fig. 1. Secondary electron (SE) image showing the morphology of the Al-Mg-Sc-Zr alloy powders (a); particles size distribution of the powders (b); schematics of DED process (c), scanning strategies of single-track/multi-layer deposits (d) and bulk deposits (e). The sample coordinate system is indicated and Z is the deposition direction.
| Alloys | Mg | Mn | Sc | Zr | Fe | Si | Al |
|---|---|---|---|---|---|---|---|
| 0.25Sc-0.12 Zr alloy | 4.82 | 0.68 | 0.25 | 0.12 | 0.19 | 0.03 | Bal. |
| 0.35Sc-0.16 Zr alloy | 4.87 | 0.67 | 0.35 | 0.16 | 0.17 | 0.03 | Bal. |
| 0.50Sc-0.21 Zr alloy | 4.86 | 0.68 | 0.50 | 0.21 | 0.20 | 0.02 | Bal. |
Table 1 Chemical compositions of the three types of powder materials (wt.%).
| Alloys | Mg | Mn | Sc | Zr | Fe | Si | Al |
|---|---|---|---|---|---|---|---|
| 0.25Sc-0.12 Zr alloy | 4.82 | 0.68 | 0.25 | 0.12 | 0.19 | 0.03 | Bal. |
| 0.35Sc-0.16 Zr alloy | 4.87 | 0.67 | 0.35 | 0.16 | 0.17 | 0.03 | Bal. |
| 0.50Sc-0.21 Zr alloy | 4.86 | 0.68 | 0.50 | 0.21 | 0.20 | 0.02 | Bal. |
| Property | Unit | T = 100 °C | T =635 °C | T =900 °C | T = 1400 °C |
|---|---|---|---|---|---|
| Specific heat capacity | J/(mol K) | 25.6 | 31.6 | Constant 29.4 | |
| Thermal conductivity | W/(m K) | 129.5 | 86.9 | 98.6 | 117.2 |
| Density | kg/m3 | 2675 |
Table 2 Thermal physical parameters used in thermal simulation [14].
| Property | Unit | T = 100 °C | T =635 °C | T =900 °C | T = 1400 °C |
|---|---|---|---|---|---|
| Specific heat capacity | J/(mol K) | 25.6 | 31.6 | Constant 29.4 | |
| Thermal conductivity | W/(m K) | 129.5 | 86.9 | 98.6 | 117.2 |
| Density | kg/m3 | 2675 |
Fig. 2. Polarized light micrographs showing the grain structure of bottom-middle area (a), and top layer (b); EBSD map at the equiaxed-to-columnar transition region (c); {001} pole figures of the selected CG region (d) and FG region (e); <001> is parallel to the deposition direction (Z).
Fig. 3. Backscattered electron (BSE) image showing the distribution characteristic of the second phase particles at the equiaxed-to-columnar transition region (a); EDS results of point A (b), point B (c) and point C (d).
Fig. 4. SEM image showing the FG-to-CG transition region, and the interface was marked by a microhardness indentation (a). EPMA mapping images showing the distribution of Al, Mg, Sc, Zr, Mn, Fe, and Si elements over the FG-to-CG transition region (b-h).
Fig. 5. STEM-EDS mapping results of the Sc, Zr, Mg, Mn, Fe, and Si for the second phase particles (a); BF-TEM image showing the Al3(Sc,Zr) precipitate within the grain (b); SADP image taken along $[\bar{1}12]$ showing the 110 type super-lattice reflections of L12 phase structure (c).
Fig. 6. Polarized light micrographs showing the grain structure of the top layer and middle area of block deposits. (a, d) 0.25Sc-0.12 Zr alloy; (b, e) 0.35Sc-0.16 Zr alloy; (c, f) 0.50Sc-0.21 Zr alloy.
Fig. 7. BSE images showing the characteristics of the particles at the fusion boundary and the inner region of molten pool for 0.25Sc-0.12 Zr alloy (a), 0.35Sc-0.16 Zr alloy (b) and 0.50Sc-0.21 Zr alloy (c), respectively; area fractions of the particles at the fusion boundary and the inner region of molten pool (d).
Fig. 8. Polarized light micrograph showing the matrix of microhardness indentations in single-track/multi-layer deposits (0.35Sc-0.16 Zr alloy) (a); microhardness contour maps under as built (b) and after aging conditions (c); average microhardness results along the deposition direction (d). The indentations at FG region were marked as the red rectangles in (a).
Fig. 9. Microhardness results of block deposits under as built and after aging conditions (a); evolution of the microhardness with the total Sc/Zr content (b).
Fig. 10. Equilibrium phase diagram of Al-3.3Mg-0.68Mn-xSc (wt.%) alloy system calculated by Thermo-Calc software with TTAL7 database (a); the predicted critical condition required to suppress the nucleation of primary Al3Sc phase (b). The equivalent Sc contents were marked by the red dotted lines.
| Physical properties | Value |
|---|---|
| ⍴ (Al3Sc) | 3030 kg/m3 |
| a | 5 × 10-10 m |
| Sm (Al3Sc) | 42.2 J/(mol K) |
Table 3 Physical properties used in the prediction model of primary Al3Sc phase [20,28,30].
| Physical properties | Value |
|---|---|
| ⍴ (Al3Sc) | 3030 kg/m3 |
| a | 5 × 10-10 m |
| Sm (Al3Sc) | 42.2 J/(mol K) |
Fig. 11. Simulated temperature field (a) and temperature-time dependency of the marked 13 different positions at the center line of the molten pool (b); evolution of solidification cooling rate with the depths of the molten pool (c). The liquids temperature of primary Al3Sc phase was marked as the black dot line.
Fig. 12. Simulated temperature field of molten pool (a) and the evolution of temperature gradient (G) and solidification velocity (V) with the depths of the molten pool (b).
Fig. 13. BF-TEM image showing the in-situ precipitated secondary Al3(Sc,Zr) in α-Al matrix of the block deposits for the 0.35Sc-0.16 Zr alloy (a); simulated thermal history of points at heights of 0 and 4 mm in the block deposits during DED (b).
| 1 | S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Addit. Manuf. 8 (2015) 36-62. |
| [2] |
C. Yap, C. Chua, Z. Dong, Z. Liu, D. Zhang, L. Loh, S. Sing, Appl. Phys. Rev. 2 (2015), 041101.
DOI URL |
| [3] |
W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Appl. Phys. Rev. 2 (2015), 041304.
DOI URL |
| [4] |
J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI URL |
| [5] |
J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Acta Mater. 115 (2016) 285-294.
DOI URL |
| [6] |
H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Mater. Sci. Eng. A 656 (2016) 47-54.
DOI URL |
| [7] |
N. Kaufmann, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, F. Walther, Phys. Proc. 83 (2016) 918-926.
DOI URL |
| [8] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
| [9] |
N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
| [10] |
K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Phys. Proc. 12 (2011) 369-374.
DOI URL |
| [11] |
A.B. Spierings, K. Dawson, M. Voegtlin, F. Palm, P.J. Uggowitzer, CIRP Ann. Manuf. Technol. 65 (2016) 213-216.
DOI URL |
| [12] |
A.B. Spierings, K. Dawson, K. Kern, F. Palm, K. Wegener, Mater. Sci. Eng. A 701 (2017) 264-273.
DOI URL |
| [13] |
K.V. Yang, Y. Shi, F. Palm, X. Wu, P. Rometsch, Scr. Mater. 145 (2018) 113-117.
DOI URL |
| [14] |
A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palm, K. Wegener, Mater. Des. 115 (2017) 52-63.
DOI URL |
| [15] |
J. Røyset, N. Ryum, Int. Mater. Rev. 50 (2005) 19-44.
DOI URL |
| [16] |
Y.J. Shi, P. Rometsch, K. Yang, F. Palm, X.H. Wu, Mater. Lett. 196 (2017) 347-350.
DOI URL |
| [17] | J. Royset, Metall. Sci. Technol. 25 (2007) 11-21. |
| [18] | Particle Size Analysis, Image Analysis Methods Part1, Static Image Analysis Methods, ISO, 2014, 13322-1. |
| [19] | Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry (Performance Based Method), ASTM E3061-17, USA. |
| [20] | Y. Harada, D.C. Dunand, Mater. Sci. Eng.A 329-331 (2002) 686-695. |
| [21] | Standard Test Method for Micro-indentation Hardness of Materials, ASTM E384-17, USA. |
| [22] |
M. Chiumenti, X. Lin, M. Cervera, W. Lei, Y. Zheng, W. Huang, Rapid Prototyp. J. 23 (2017) 448-463.
DOI URL |
| [23] |
E.D. Magalhaes, C.P. Silva, A.L. e Silva, S.M. eSilva, Int. J. Numer. Methods Heat Fluid Flow 27 (2017) 561-574.
DOI URL |
| [24] | E. Kennedy, G. Byrne, D. Collins, J. Mater. Process. Technol. 155 (2004) 1855-1860. |
| [25] |
M. Gäumann, C. Bezençon, P. Canalis, W. Kurz, Acta Mater. 49 (2001) 1051-1062.
DOI URL |
| [26] |
G.P. Dinda, A.K. Dasgupta, J. Mazumder, Surf. Coat. Technol. 206 (2012) 2152-2160.
DOI URL |
| [27] |
N. Kumar, R. Mishra, Mater. Sci. Eng. A 580 (2013) 175-183.
DOI URL |
| [28] |
G. Shao, P. Tsakiropoulos, Acta Metall. 42 (1994) 2937-2942.
DOI URL |
| [29] |
K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkd 97 (2006) 246-265.
DOI URL |
| [30] | A. Shubin, K.Y. Shunyaev, T. Kulikova, Russ. Metall. 5 (2008) 364-369. |
| [31] |
A.B. Spierings, K. Dawson, P.J. Uggowitzer, K. Wegener, Mater. Des. 140 (2018) 134-143.
DOI URL |
| [32] |
Y. Wang, Z. Zhang, R. Wu, J. Sun, Y. Jiao, L. Hou, J. Zhang, X. Li, M. Zhang, Mater. Sci. Eng. A 745 (2019) 411-419.
DOI URL |
| [1] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
| [2] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
| [3] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
| [4] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
| [5] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
| [6] | Jianwen Nie, Chaoyue Chen, Longtao Liu, Xiaodong Wang, Ruixin Zhao, Sansan Shuai, Jiang Wang, Zhongming Ren. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition [J]. J. Mater. Sci. Technol., 2021, 62(0): 148-161. |
| [7] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [8] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
| [9] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
| [10] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
| [11] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
| [12] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
| [13] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
| [14] | Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 47(0): 20-28. |
| [15] | Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 143-153. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
