Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 37 Issue (0): 143-153    DOI: 10.1016/j.jmst.2019.06.016
Research Article Current Issue | Archive | Adv Search |
Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy
Yinghui Zhouab, Xin Linab*(), Nan Kangab*(), Weidong Huangab, Jiang Wangab, Zhennan Wangab
a State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China;
b Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China, Northwestern Polytechnical University, Xi'an 710072, China
Download:  HTML  PDF(5940KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Wire + arc additive manufacturing (WAAM) was preliminarily employed to fabricate the 2219 aluminum alloy. The influence of the electric arc travel speed (TS) on the macro-morphology, microstructure, and mechanical properties were investigated. The results indicated that as the electric arc TS increased, the size and the volume fraction of equiaxed grain decreased. The high arc TS during WAAM also promoted the precipitation of the θ (Al2Cu) phase. The volume fractions of θ″ and θ′ phases reached maximum values when TS is 350 and 250 mm/min, respectively. The thermal cycle facilitated the precipitation of the θ′ phase. In addition, the micro-hardness and tensile strength of the alloy were analyzed, and the results indicated that samples fabricated at TS of 350 mm/min possessed finer equiaxed grain and exhibited higher ultimate tensile strength (273.5 MPa) and yield strength (182.9 MPa) compared to those fabricated at 250 mm/min.

Key words:  Wire + arc additive manufacturing      2219 aluminum alloy      Microstructure      Mechanical properties     
Received:  17 December 2018     
Corresponding Authors:  Lin Xin,Kang Nan     E-mail:  xlin@nwpu.edu.cn;nan.kang@nwpu.edu.cn

Cite this article: 

Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy. J. Mater. Sci. Technol., 2020, 37(0): 143-153.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.06.016     OR     https://www.jmst.org/EN/Y2020/V37/I0/143

Cu Mn Mg Zr Ti Zn Al
5.91 0.36 0.39 0.17 0.16 0.10 Bal.
Table 1  Chemical compositions of ER2319 wire (wt%).
Fig. 1.  (a) Schematic diagram of WAAM process, (b) image of the molten pool and droplet transfer, (c) microstructure of metallographic samples using OM and EBSD, the dimensions of tensile specimens and the sampling positions and (d) dimensions of tensile test samples.
Parameter Value
Type of welding current AC
Alternating current frequency 50 Hz
Wire feed speed 2 m/min
TS 150, 250, 350, 450?mm/min
Argon 99.99% purity
Shield gas flow rate 18?L/min
Current intensity 150 A
Tungsten electrode diameter 3.2?mm
Table 2  Deposition parameters.
Fig. 2.  Surface morphologies of the additively manufactured samples fabricated at several TS values.
Travel speed (mm/min) Width (mm) Height (mm)
450 5.7?±?2 10.9?±?2
350 6.8?±?2 10.8?±?2
250 8.7?±?1 15.7?±?1
150 10.6?±?1 18.9?±?1
Table 3  Sizes of deposited layers at several TS values.
Fig. 3.  Cross sections of the specimens deposited at several TS values: (a) 150?mm/min; (b) 250?mm/min; (c) 350?mm/min; (d) 450?mm/min.
Fig. 4.  Microstructures of the samples deposited at several TS values observed using OM: (a) 150?mm/min; (b) 250?mm/min; (c) 350?mm/min; (d) 450?mm/min.
Fig. 5.  Inverse pole figures (IPF) coloring orientation maps from the cross section (y-z plane) of WAAM-processed 2219 aluminum alloy at several TS values: (a) 150?mm/min; (b) 250?mm/min; (c) 350?mm/min; (d) 450?mm/min.
Fig. 6.  Histograms of area fraction of grains distribution analyzed using EBSD at several TS values.
Fig. 7.  SEM images of θ phase in the 2219 aluminum alloy fabricated using WAAM at various TS values: (a) 150?mm/min; (b) 250?mm/min; (c) 350?mm/min; (d) 450?mm/min.
Fig. 8.  SEM images of θ′ phase in the 2219 aluminum alloy fabricated using WAAM at various TS values: (a) 150?mm/min; (b) 250?mm/min; (c) 350?mm/min; (d) 450?mm/min.
Fig. 9.  SEM images of θ″ phase in the 2219 aluminum alloy fabricated using WAAM at different TS values: (a) 150?mm/min; (b) 250?mm/min; (c) 350?mm/min; (d) 450?mm/min.
Fig. 10.  SEM images of θ phase in the 2219 aluminum alloy fabricated using WAAM at various region: (a, c) the upper region; (b, d) the lower region.
Fig. 11.  Micro-hardness of the 2219 aluminum alloy fabricated using WAAM at several TS values.
Fig. 12.  SEM images of θ′ and θ″ phases in the 2219 aluminum alloy fabricated using WAAM at various regions: (a) the equiaxed grain zone; (b) the columnar grain zone.
Fig. 13.  YS, UTS and EL results of WAAM-processed 2219 aluminum alloy deposited at various TS values.
Fig. 14.  SEM images of fracture surfaces of WAAM-processed 2219 aluminum alloy at several TS values: (a) 150?mm/min; (b) 250?mm/min; (c) 350?mm/min; (d) 450?mm/min.
Fig. 15.  Schematic diagram of the reason for the formation of equiaxed grains.
[1] R. Sun, L. Li, Y. Zhu, W. Guo, P. Peng, B. Cong, J. Sun, Z. Che, B. Li, C. Guo, L. Liu, J. Alloys. Compd. 747(2018) 255-265.
[2] F. Montevecchi, G. Venturini, N. Grossi, A. Scippa, G. Campatelli, Addit. Manuf. 21(2018) 479-486.
[3] J.V. Gordon, C.V. Haden, H.F. Nied, R.P. Vinci, D.G. Harlow, Mater. Sci. Eng. A 724 (2018) 431-438.
[4] G. Wang, Y. Zhao, Y. Hao, J. Mater. Sci. Technol. 34(2018) 73-91.
[5] C. Liu, J. He, Vacuum 132 (2016) 70-81.
[6] Q. Li, A. Wu, Y. Li, G. Wang, D. Yan, J. Liu, Mater. Sci. Eng. A 623 (2015) 38-48.
[7] J. Gu, J. Ding, S.W. Williams, H. Gu, J. Bai, Y. Zhai, P. Ma, Mater. Sci. Eng. A 651 (2016) 18-26.
[8] Y. Chen, Z. Hu, Y. Xu, J. Wang, P. Schützendübe, Y. Huang, Y. Liu, J. Mater. Sci. Technol. 35(2019) 512-519.
[9] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
[10] J. Gu, X. Wang, J. Bai, J. Ding, S. Williams, Y. Zhai, K. Liu, Mater. Sci. Eng. A 712 (2018) 292-301.
[11] H. Zhu, L. Huang, J. Li, X. Li, H. Ma, C. Wang, F. Ma, Mater. Sci. Eng. A 714 (2018) 124-139.
[12] J. Gu, J. Bai, Y. Zhu, Y. Qin, H. Gu, Y. Zhai, P. Ma, Comput. Mater. Sci. 111(2016) 328-333.
[13] L.E. Murr, J. Mater. Sci. Technol. 35(2019) 231-241.
[14] I. Tabernero, A. Paskual, P. Álvarez, A. Suárez, Proced. CIRP 68 (2018) 358-362.
[15] C. Shen, Z. Pan, D. Cuiuri, B. Dong, H. Li, Mater. Sci. Eng. A 669 (2016) 118-126.
[16] K.F. Ayarkwa, S.W. Williams, J. Ding, Addit. Manuf. 18(2017) 186-193.
[17] F. Hejripour, D.T. Valentine, D.K. Aidun, Int. J. Heat Mass Transfer. 125(2018) 471-484.
[18] J. Xiong, Y. Li, R. Li, Z. Yin, J. Mater. Process. Technol. 252(2018) 128-136.
[19] J. Gu, J. Ding, S.W. Williams, H. Gu, P. Ma, Y. Zhai, J. Mater. Process. Technol. 230(2016) 26-34.
[20] B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish, J. Manuf. Process. 35(2018) 127-139.
[21] A. Apelblat, E. Korin, J. Chem. Thermodyn. 34(2002) 1621-1637.
[22] D. Zhang, G. Wang, A. Wu, Y. Zhao, Q. Li, X. Liu, D. Meng, J. Song, Z. Zhang, J. Alloys. Compd. 777(2019) 1044-1053.
[23] J. Li, X. Cheng, Z. Li, X. Zong, X.H. Chen, S.Q. Zhang, H.M. Wang, J. Alloys. Compd. 789(2019) 15-24.
[24] L.X. Shuai, W.Q. Xiao, J.B. Yu, J. Wang, Z.M. Ren, Acta Metall. Sin. 54(2018) 918-926 (in Chinese).
[25] A. Horgar, H. Fostervoll, B. Nyhus, X. Ren, M. Eriksson, O.M. Akselsen, J. Mater. Process. Technol. 259(2018) 68-74.
[26] Y.L. Chen, M. Gao, X.Y. Zeng, Mater. Sci. Eng. A 711 (2018) 415-423.
[27] J.Y. Bai, C.L. Fan, S.B. Lin, C.L. Yang, B.L. Dong, J. Mater. Eng. Perform. 26(2017) 1808-1816.
[28] B. Cong, R. Ouyang, B. Qi, J. Ding, Rare Met. Mater. Eng. 45(2016) 606-611.
[29] E.M. Ryan, J.F. Watts, M.J. Whiting, J. Mater. Process. Technol. 262(2018) 577-584.
[30] H.E. Coules, P. Colegrove, L.D. Cozzolino, S.W. Wen, J. Mater. Process. Technol. 212(2012) 962-968.
[31] P.A. Colegrove, J. Donoghue, F. Martina, J. Gu, P. Prangnell, J. Hönnige, Scr. Mater. 135(2017) 111-118.
[32] C. Brice, R. Shenoy, M. Kral, K. Buchannan, Mater. Sci. Eng. A 648 (2015) 9-14.
[33] S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove, Mater. Sci. Technol. 32(2016) 641-647.
[34] J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen, J. Lu, Materials 9 (2016) 10.
[35] G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, Mater. Des. 105(2016) 160-170.
[36] A. Lopez, R. Bacelar, I. Pires, T.G. Santos, J.P. Sousa, L. Quintino, Addit. Manuf. 21(2018) 298-306.
[37] J.C.L.A. Kostrivas, Weld. World 50 (2006) 24-34.
[38] J.C.L.A. Gutierrez, Weld. World(1998) 123s-132s.
[39] D.C. Lin, G.X. Wang, T.S. Srivatsan, Mater. Sci. Eng. A 351(2003) 304-309.
[40] J.C.L.A. Kostrivas, Weld. World. 50(2006) 24-34.
[41] S. Mondol, S. Kashyap, S. Kumar, K. Chattopadhyay, Mater. Sci. Eng. A 732 (2018) 157-166.
[42] Y.C. Chen, J.C. Feng, H.J. Liu, Mater. Charact. 60(2009) 476-481.
[43] Q. Li, A.P. Wu, Y.J. Li, G.Q. Wang, B.J. Qi, D.Y. Yan, L.Y. Xiong, Trans. Nonferrous Met. Soc. China 27 (2017) 258-271.
[44] C. Lei, H. Li, G.W. Zheng, J. Fu, J. Alloys. Compd. 731(2018) 90-99.
[45] J. Xiong, R. Li, Y. Lei, H. Chen, J. Mater. Process. Technol. 251(2018) 12-19.
[46] O.G. Rivera, P.G. Allison, L.N. Brewer, O.L. Rodriguez, J.B. Jordon, T. Liu, W.R. Whittington, R.L. Martens, Z. McClelland, C.J.T. Mason, L. Garcia, J.Q. Su, N. Hardwick, Mater. Sci. Eng. A 724 (2018) 547-558.
[1] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[2] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[3] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[4] Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting[J]. 材料科学与技术, 2020, 39(0): 144-154.
[5] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[6] Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy[J]. 材料科学与技术, 2020, 39(0): 173-182.
[7] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[8] Shanshan Chen, Bin Zhang, Bin Zhanggchun, Hao Lin, Hui Yang, Feng Zheng, Ming Chen, Ke Yang. Assessment of structure integrity, corrosion behavior and microstructure change of AZ31B stent in porcine coronary arteries[J]. 材料科学与技术, 2020, 39(0): 39-47.
[9] Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review[J]. 材料科学与技术, 2020, 39(0): 56-73.
[10] Honggang Dong, Yueqing Xia, Xinxing Xu, Gul Jabeen Naz, Xiaohu Hao, Peng Li, Jun Zhou, Chuang Dong. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model[J]. 材料科学与技术, 2020, 39(0): 89-98.
[11] Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 45(0): 207-214.
[12] Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. 材料科学与技术, 2020, 39(0): 99-105.
[13] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[14] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[15] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.