Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 47 Issue (0): 20-28    DOI: 10.1016/j.jmst.2020.01.041
Research Article Current Issue | Archive | Adv Search |
Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing
Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda*()
Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA
Download:  HTML  PDF(4460KB) 
Export:  BibTeX | EndNote (RIS)      

This research proposes a design and development strategy of a new nickel-based superalloy for additive manufacturing. A new Ni-based superalloy has been developed by the application of the combinatorial alloy development technique coupled with CALPHAD based solidification modeling by effectively suppressing the precipitation kinetics. The suppression of precipitation during processing paved a way for prevention of cracks during deposition. The new alloy “WSU 150″ revealed excellent room temperature mechanical properties with a yield strength of 867 MPa, an ultimate tensile strength of 1188 MPa, and an elongation of 27.9% in the as-deposited condition. The mechanical properties of the heat-treated alloy were improved significantly to 1114 MPa yield strength, 1396 MPa ultimate tensile strength, and an elongation of 16.1%. Improvement in the mechanical properties is attributed to the additional precipitation and coarsening of γ' and carbides during heat-treatment. Microstructural investigation of the alloy revealed spherical γ' with a rippled size distribution from the center to the interdendritic region. The average size of the γ' particles in the as-deposited condition was found to be around 48 nm in the interdendritic region. Heat-treatment promoted the coarsening of γ' which is explained in the paper.

Key words:  Ni-based superalloys      Additive manufacturing      Laser metal deposition      Ripple pattern microstructure      Alloy development      Mechanical properties     
Received:  11 October 2019     
Corresponding Authors:  Guru Prasad Dinda     E-mail:

Cite this article: 

Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing. J. Mater. Sci. Technol., 2020, 47(0): 20-28.

URL:     OR

Fig. 1.  Robotic laser metal deposition (LMD) equipment developed at Wayne State University. (a) Robotic arm with a nozzle attached through the optical fiber, (b) Image demonstrating the combinatorial alloy development technique with LMD.
Fig. 2.  SEM images of the as-deposited gradient samples showing the microstructural morphology of γ? particles. (a → h) Showing the increasing trend of size and volume fraction of γ? with the increase of high γ? alloy content in the sample.
Element (Wt%) Ni Cr C Mo Co W Cb (Nb) Ti Ta Al
WSU150 59.64 17.83 0.09 5.3 9.29 1.33 0.45 2.75 0.9 2.44
Table 1  Chemical composition of the new WSU 150 alloy powder.
Alloy Laser Power (Watt) Scan Speed (mm/min) Powder Flow Rate (gm/min) Shaping Gas (ft3/hr) Powder Carrier Gas (ft3/hr)
WSU 150 750 720 14.5 15 15
Table 2  Process parameters used for the deposition of WSU 150.
Fig. 3.  (a) Block deposited for the tension test coupons, (b) Tension test sample dimensions in accordance with ASTM E8 standards, (c) Tension test sample prepared according to (b).
Fig. 4.  (a) CALPHAD based solidification modeling for WSU 150, (b) Schiel based elemental segregation model for WSU 150 from start to the end of solidification.
Fig. 5.  SEM analysis of as-deposited WSU 150. (a) Low magnification image showing the dendrite (gray contrast) and interdendritic region (lighter region), (b-c) Dendrite with different cores, (d) γ? particles at the center of the dendrite, (e) Transition zone of two cores with a different precipitate size distribution, and (f) Magnified view of (c) showing different cores and size distribution of γ? particles.
Fig. 6.  SEM analysis of WSU 150 aged at 760 °C for 4 h, (a) Transition from one core to other core, (b) Dendrite and interdendritic region with carbides in the interdendritic region, (c) Dendrite and interdendritic region, (d) Magnified view of (a) showing different cores and size distribution of γ? particles.
Fig. 7.  (a-b) Locations of EDS analysis performed on the WSU 150 alloy.
Location 1 2 3
Element Wt.% Wt.% Wt.%
Al 19.59 2.81 2.73
Ta 1.32 1.84 1.72
W 2.98 2.5 2.79
Mo 5.26 5.28 5.31
Ti 2.02 2.32 2.29
Cr 14.83 17.6 17.64
Co 7.87 9.46 9.91
Ni 46.13 58.18 57.62
Location 1 2 3
Element Wt.% Wt.% Wt.%
Al 2.84 2.83 2.91
Ta 1.91 1.83 1.98
W 2.37 2.73 2.53
Mo 5.02 5.21 5.43
Ti 2.38 2.56 2.79
Cr 17.75 17.81 17.5
Co 9.24 9.03 8.97
Ni 58.5 58.01 57.9
Table 3  The EDS analysis on the sample referenced to Fig. 7.
Fig. 8.  X-ray diffraction pattern of the as-deposited and heat-treated WSU 150 samples.
Condition AD HT @760 °C/4 h
Name Units WSU150
Young’ Modulus ‘E’ GPa 191.32 201.84
Yield Strength MPa 867 1113.84
Ultimate Tensile Strength ‘UTS’ MPa 1188 1396
Engineering Strain at UTS % 27.57 16.05
% Elongation % 27.9 16.1
Fracture Stress MPa 1164.04 1386.32
Table 4  Mechanical properties of the as-deposited and the heat-treated WSU 150.
Fig. 9.  (a) Tension test results of WSU 150 conducted in as-deposited and different heat-treated conditions, (b) Bar chart representing strength and ductility of various as-deposited and heat-treated conditions.
[1] N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2) (2019) 242-269.
[2] G.P. Dinda, Mater. Sci. Eng. A Struct. Mater. 509 (1-2) (2020) 98-104.
[3] A. Bandyopadhyay, B. Heer, Mater. Sci. Eng. R Rep. 129 (2018) 1-16.
[4] M.M. Attallah, R. Jennings, X.Q. Wang, L.N. Carter, MRS Bull. 41 (10) (2016) 758-764.
[5] D. Tomus, P.A. Rometsch, M. Heilmaier, X.H. Wu, Addit. Manuf. 16 (2017) 65-72.
[6] T.M. Pollock, S. Tin, J. Propuls. Power 22 (2) (2006) 361-374.
[7] N. R. Muktinutalapati, 2011.
[8] C.A.E.M, Scientia et Technica Año (2020).
[9] E. Chauvet, P. Kontis, E.A. Jagle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, Acta Mater. 142 (2018) 82-94.
[10] M. Cloots, P.J. Uggowitzer, K. Wegener, Mater. Des. 89 (2016) 770-784.
[11] H. Peng, Y. Shi, S. Gong, H. Guo, B. Chen, Mater. Des. 159 (2018) 155-169.
[12] A. Ramakrishnan, G.P. Dinda, Mater. Sci. Eng. A 740-741 (2019) 1-13.
doi: 10.1016/j.msea.2018.10.020
[13] M.M. Khan, I. Shabib, W. Haider, Scr. Mater. 162 (2019) 223-229.
[14] A. Deschamps, F. Tancret, I.-E. Benrabah, F. De Geuser, H.P. Van Landeghem, C. R. Phys. 19 (8) (2018) 737-754.
[15] A. Kauffmann, M. Stuber, H. Leiste, S. Ulrich, S. Schlabach, D.V. Szabo, S. Seils, B. Gorr, H. Chen, H.J. Seifert, M. Heilmaier, Surf Coat Tech 325 (2017) 174-180.
[16] R. Ölmez, G. Çakmak, T. Öztürk, Int. J. Hydrogen Energy 35 (21) (2010) 11957-11965.
[17] M. Polanski, M. Kwiatkowska, I. Kunce, J. Bystrzycki, Int. J. Hydrogen Energy 38 (27) (2013) 12159-12171.
[18] R. Vilar, R. Colaço, Surf. Coat. Technol. 203 (19) (2009) 2878-2885.
[19] X. Zhang, Y. Xiang, J. Mater. 3 (3) (2017) 209-220.
[20] C.-W. Li, K.-C. Chang, A.-C. Yeh, J.-W. Yeh, S.-J. Lin, Int. J. Refract. Metals Hard Mater. 75 (2018) 225-233.
[21] S. Meher, M.C. Carroll, T.M. Pollock, L.J. Carroll, Mater. Des. 140 (2018) 249-256.
[22] H. Lukas, Computational Thermodynamics: the CALPHAD Method, Cambridge University Press the CALPHAD Method’, Cambridge University Press, 2007.
[23] S. Wlodek, M. Kelly, and D. Alden.
[24] H. J. C. Ahluwalia, 2002,58(4), 381.
[1] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[2] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[3] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[4] Bassem Barkia, Pascal Aubry, Paul Haghi-Ashtiani, Thierry Auger, Lionel Gosmain, Frédéric Schuster, Hicham Maskrot. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation[J]. 材料科学与技术, 2020, 41(0): 209-218.
[5] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[6] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[7] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[8] Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting[J]. 材料科学与技术, 2020, 48(0): 44-56.
[9] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[10] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[11] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[12] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[13] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[14] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[15] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[1] Rouli FU, Junhao CHU, Rongtang FU, Lei LI, Xin SUN. Effects of Electric Field on the Electronic Structures in Electroluminescent Polymers[J]. J Mater Sci Technol, 1999, 15(04): 354 -356 .
[2] Wu YAO, Bing CHEN, Keru WU. Smart Behavior of Carbon Fiber Reinforced Cement-based Composite[J]. J Mater Sci Technol, 2003, 19(03): 239 -242 .
[3] Delu LIU, Jie FU, Yonglin KANG, Xiangdong HUO, Yuanli WANG, Nanjing CHEN, Zhongbing WANG, Liejun LI. Oxide and Sulfide Dispersive Precipitation and Effects on Microstructure and Properties of Low Carbon Steels[J]. J Mater Sci Technol, 2002, 18(01): 5 -9 .
[4] Jiansen NI; Xiaojing WAN Wenjue CHEN and Song WANG(Institute of Metallurgy and Materials Science, Shanghai University Shanghai 200072). Effect of Mineral Oil on the Mechanical Properties and Fractographs of Fe_3(Al,Cr,Zr) Intermetallic Alloy[J]. J Mater Sci Technol, 1998, 14(6): 564 -566 .
[5] Qiulian Zeng, Jianjun Guo, Xiaolong Gu, Xinbing Zhao, Xiaogang Liu. Wetting Behaviors and Interfacial Reaction between Sn-10Sb-5Cu High Temperature Lead-free Solder and Cu Substrate[J]. J Mater Sci Technol, 2010, 26(2): 156 -162 .
[6] Taiquan Zhang, Qingchang Meng, Yujin Wang, Yu Zhou, Guiming Song. Dislocation Behavior in ZrC Particles during Elevated Temperature Compressive Deformation of a 30 vol.% ZrCp/W Composite[J]. J Mater Sci Technol, 2011, 27(6): 553 -558 .
[7] Pan Hongchen,Wang Fenghua,Jin Li,Feng Miaolin,Dong Jie. Mechanical Behavior and Microstructure Evolution of a Rolled Magnesium Alloy AZ31B Under Low Stress Triaxiality[J]. J. Mater. Sci. Technol., 2016, 32(12): 1282 -1288 .
[8] Wencai Liu, Shi Feng, Zhongquan Li, Jiong Zhao, Guohua Wu, Xianfei Wang, Lv Xiao, Wenjiang Ding. Effect of rolling strain on microstructure and tensile properties of dual-phase Mg-8Li-3Al-2Zn-0.5Y alloy[J]. J. Mater. Sci. Technol., 2018, 34(12): 2256 -2262 .
[9] Y.C. Wang, X.M. Luo, L.J. Chen, H.W. Yang, B. Zhang, G.P. Zhang. Enhancement of shear stability of a Fe-based amorphous alloy using electrodeposited Ni layers[J]. J. Mater. Sci. Technol., 2018, 34(12): 2283 -2289 .
[10] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. J. Mater. Sci. Technol., 2020, 46(0): 136 -138 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.