J. Mater. Sci. Technol. ›› 2021, Vol. 71: 201-210.DOI: 10.1016/j.jmst.2020.07.035
• Research Article • Previous Articles Next Articles
Jinfeng Linga, Dandan Huangb, Kewu Baic, Wei Lia, Zhentao Yua, Weimin Chena,*(
)
Received:2020-06-01
Revised:2020-07-10
Accepted:2020-07-27
Published:2021-04-30
Online:2021-04-30
Contact:
Weimin Chen
About author:* E-mail addresses: chenweiming126@jnu.edu.cn, chenweiming126@163.com (W. Chen).Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys[J]. J. Mater. Sci. Technol., 2021, 71: 201-210.
| Diffusion couple | Composition (at.%) |
|---|---|
| Couple 1/C1 | Ti-8.22Nb-2.39Mo/Ti-10.35Zr-1.92Mo |
| Couple 2/C2 | Ti-10.35Zr-1.87Mo/Ti-8.96Nb-10.25Zr |
| Couple 3/C3 | Ti-18.40Nb-20.70 Zr/Ti-16.26Nb-6.07Mo |
| Couple 4/C4 | Ti-16.26Nb-6.07Mo/Ti-20.22Zr-7.18Mo |
| Couple 5/C5 | Ti-22.07Zr-7.48Mo/Ti-19.27Nb-22.20Zr |
| Couple 6/C6 | Ti-30.51Zr-12.50Mo/Ti-26.58Nb-31.10Zr |
| Couple 7/C7 | Ti-8.29Nb-0.64Ta/Ti-10.36Zr-0.85Ta |
| Couple 8/C8 | Ti-10.36Zr-0.85Ta/Ti-8.11Nb-10.40Zr |
| Couple 9/C9 | Ti-15.77Nb-21.27 Zr/Ti-17.76Nb-3.63Ta |
| Couple 10/C10 | Ti-17.76Nb-3.63Ta/Ti-19.74Zr-5.19Ta |
| Couple 11/C11 | Ti-26.78Nb-30.18 Zr/Ti-29.09Nb-7.70Ta |
| Couple 12/C12 | Ti-31.79Zr-7.74Ta/Ti-24.65Nb-31.47Zr |
Table 1 List of the nominal alloy compositions for the diffusion couples prepared in the present work.
| Diffusion couple | Composition (at.%) |
|---|---|
| Couple 1/C1 | Ti-8.22Nb-2.39Mo/Ti-10.35Zr-1.92Mo |
| Couple 2/C2 | Ti-10.35Zr-1.87Mo/Ti-8.96Nb-10.25Zr |
| Couple 3/C3 | Ti-18.40Nb-20.70 Zr/Ti-16.26Nb-6.07Mo |
| Couple 4/C4 | Ti-16.26Nb-6.07Mo/Ti-20.22Zr-7.18Mo |
| Couple 5/C5 | Ti-22.07Zr-7.48Mo/Ti-19.27Nb-22.20Zr |
| Couple 6/C6 | Ti-30.51Zr-12.50Mo/Ti-26.58Nb-31.10Zr |
| Couple 7/C7 | Ti-8.29Nb-0.64Ta/Ti-10.36Zr-0.85Ta |
| Couple 8/C8 | Ti-10.36Zr-0.85Ta/Ti-8.11Nb-10.40Zr |
| Couple 9/C9 | Ti-15.77Nb-21.27 Zr/Ti-17.76Nb-3.63Ta |
| Couple 10/C10 | Ti-17.76Nb-3.63Ta/Ti-19.74Zr-5.19Ta |
| Couple 11/C11 | Ti-26.78Nb-30.18 Zr/Ti-29.09Nb-7.70Ta |
| Couple 12/C12 | Ti-31.79Zr-7.74Ta/Ti-24.65Nb-31.47Zr |
Fig. 1. Measured Young's modulus, hardness, elastic recovery and composition profiles of the bcc Ti-based alloys in the couples of (a) Ti-8.22Nb-2.39Mo/Ti-10.35Zr-1.92Mo and (b) Ti-16.26Nb-6.07Mo/Ti-20.22Zr-7.18Mo annealed at 1273 K for 25 h.
Fig. 2. Measured Young's modulus, hardness, elastic recovery and composition profiles of the bcc Ti-based alloys in the couples of (a) Ti-17.76Nb-3.63Ta/Ti-19.74Zr-5.19Ta and (b) Ti-26.78Nb-30.18 Zr/Ti-29.09Nb-7.70Ta annealed at 1273 K for 25 h.
Fig. 3. Plots of (a) hardness and (b) elastic recovery vs. Young's modulus of the bcc Ti-Nb-Zr, Ti-Nb-Ta, Ti-Zr-Ta, Ti-Nb-Zr-Ta, Ti-Nb-Mo, Ti-Zr-Mo, and Ti-Nb-Zr-Mo alloys obtained in this study.
Fig. 4. Plots of (a, b) the - diagram, (c, d) the VEC, and (e, f) the [Mo] and Kβ vs. measured Young's modulus of the ternary and quaternary Ti-based alloys in Ti-Nb-Zr-Mo and Ti-Nb-Zr-Ta systems.
Fig. 5. The H/E and H3/E2 ratios of the bcc Ti-based alloys in the couples of (a) Ti-8.22Nb-2.39Mo/Ti-10.35Zr-1.92Mo and (b) Ti-16.26Nb-6.07Mo/Ti-20.22Zr-7.18Mo annealed at 1273 K for 25 h.
Fig. 6. The H/E and H3/E2 ratios of the bcc Ti-based alloys in the couples of (a) Ti-17.76Nb-3.63Ta/Ti-19.74Zr-5.19Ta and (b) Ti-26.78Nb-30.18 Zr/Ti-29.09Nb-7.70Ta annealed at 1273 K for 25 h.
| Alloy | Value x | Reference |
|---|---|---|
| Ti-Sc | 6.52 ± 0.03 | [ |
| Ti-Nb | 6.07 ± 0.11 | [ |
| Ti-Zr | 5.06 ± 0.12 | [ |
| Ti-Cr | 6.58 ± 0.03 | [ |
| Ti-Nb-Zr | 4.94 ± 0.04 | [ |
| Ti-Nb-Cr | 4.99 ± 0.03 | [ |
| Ti-Nb-Zr-Cr | 6.50 ± 0.02 | [ |
| Ti-Nb-Ta-Zr | 6.28 ± 0.04 | [ |
| Ti-Nb-Zr | 6.11 ± 0.01 | This work |
| Ti-Nb-Mo | 6.27 ± 0.02 | This work |
| Ti-Zr-Mo | 6.17 ± 0.02 | This work |
| Ti-Nb-Ta | 6.33 ± 0.05 | This work |
| Ti-Zr-Ta | 6.16 ± 0.01 | This work |
| Ti-Nb-Zr-Mo | 6.23 ± 0.02 | This work |
| Ti-Nb-Zr-Ta | 6.21 ± 0.01 | This work |
Table 2 List of the x value for the Ti alloys in the present work and Refs. [24,28,31].
| Alloy | Value x | Reference |
|---|---|---|
| Ti-Sc | 6.52 ± 0.03 | [ |
| Ti-Nb | 6.07 ± 0.11 | [ |
| Ti-Zr | 5.06 ± 0.12 | [ |
| Ti-Cr | 6.58 ± 0.03 | [ |
| Ti-Nb-Zr | 4.94 ± 0.04 | [ |
| Ti-Nb-Cr | 4.99 ± 0.03 | [ |
| Ti-Nb-Zr-Cr | 6.50 ± 0.02 | [ |
| Ti-Nb-Ta-Zr | 6.28 ± 0.04 | [ |
| Ti-Nb-Zr | 6.11 ± 0.01 | This work |
| Ti-Nb-Mo | 6.27 ± 0.02 | This work |
| Ti-Zr-Mo | 6.17 ± 0.02 | This work |
| Ti-Nb-Ta | 6.33 ± 0.05 | This work |
| Ti-Zr-Ta | 6.16 ± 0.01 | This work |
| Ti-Nb-Zr-Mo | 6.23 ± 0.02 | This work |
| Ti-Nb-Zr-Ta | 6.21 ± 0.01 | This work |
Fig. 7. The relationship among the Young's modulus, hardness, elastic recovery, H/E, and H3/E2 of (a) the bcc Ti-Nb-Zr-Mo and Ti-Nb-Zr-Ta alloys, (b) the Ti-Nb-Zr(-Ta) alloys satisfying requirements including that E is lower than 70 GPa, H is higher than 3 GPa, H/E is within the range of 0.04 to 0.072, H3/E2 is greater than or equal to 0.009, and elastic recovery is smaller than 0.45, and (c) the Ti-Nb-Zr-Mo and Ti-Nb-Zr-Ta alloys satisfying two requirements including that E is within the range of 88 to 92 GPa, and H is higher than 4 GPa.
| [1] |
Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Appl. Phys. Lett. 87 (2005) 091906.
DOI URL |
| [2] |
M. Todea, A. Vulpoi, C. Popa, P. Berce, S. Simon, J. Mater. Sci. Technol. 35 (2019) 418-426.
DOI |
| [3] |
J.P. Luo, J.F. Sun, Y.J. Huang, J.H. Zhang, Y.D. Zhang, D.P. Zhao, M. Yan, Mater. Sci. Eng. C 97 (2019) 275-284.
DOI URL |
| [4] |
W. Xu, X. Lu, J. Tian, C. Huang, M. Chen, Y. Yan, L. Wang, X. Qu, C. Wen, J. Mater. Sci. Technol. 41 (2020) 191-198.
DOI URL |
| [5] |
C.D. Rabadia, Y.J. Liu, G.H. Cao, Y.H. Li, C.W. Zhang, T.B. Sercombe, H. Sun, L.C. Zhang, Mater. Sci. Eng. A 732 (2018) 368-377.
DOI URL |
| [6] |
S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, Y.H. Li, X.H. Zhang, L.C. Zhang, Mater. Des. 181 (2019) 108064.
DOI URL |
| [7] |
S.-P. Wang, J. Xu, J. Mater. Sci. Technol. 35 (2019) 812-816.
DOI URL |
| [8] |
T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, T. Nakano, Mater. Sci. Eng. C 107 (2020) 110322.
DOI URL |
| [9] |
L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Scripta Mater. 65 (2011) 21-24.
DOI URL |
| [10] |
Y.J. Liu, Y.S. Zhang, L.C. Zhang, Materialia 6 (2019) 100299.
DOI URL |
| [11] |
L.-C. Zhang, L.-Y. Chen, Adv. Eng. Mater. 21 (2019) 1801215.
DOI URL |
| [12] |
S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, P. Qin, Y.H. Li, X.H. Zhang, L.C. Zhang, Mater. Sci. Eng. C 110 (2020) 110728.
DOI URL |
| [13] |
S. Ozan, J. Lin, Y. Li, R. Ipek, C. Wen, Acta Biomater. 20 (2015) 176-187.
DOI URL |
| [14] |
W. Chen, Calphad 60 (2018) 98-105.
DOI URL |
| [15] |
W. Chen, W. Li, Y. Du, Calphad 62 (2018) 223-231.
DOI URL |
| [16] |
D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Acta Mater. 55 (2007) 4475-4487.
DOI URL |
| [17] |
V.I. Betekhtin, Yu.R. Kolobov, O.A. Golosova, B.K. Kardashev, A.G. Kadomtsev, M. V. Narykova, M.B. Ivanov, T.N. Vershinina, Tech. Phys. 58 (2013) 1432-1436.
DOI URL |
| [18] |
A.R.V. Nunes, S. Borborema, L.S. Araújo, J. Dille, L. Malet, L.H. de Almeida, J. Alloys Compds. 743 (2018) 141-145.
DOI URL |
| [19] |
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A 243 (1998) 244-249.
DOI URL |
| [20] |
M. Niinomi, Biomater. 24 (2003) 2673-2683.
DOI URL |
| [21] | N. Sakaguchi, N. Mitsuo, T. Akahori, T. Saito, T. Furuta, Mater. Sci.Forum 449-452 (2004) 1269-1272. |
| [22] |
M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Nakajima, Acta Mater. 56 (2008) 2856-2863.
DOI URL |
| [23] | I. Cinca, A. Nocivin, D. Raducanu, T. Gloriant, D.M. Gordin, I. Dan, A. Caprarescu, V.D. Cojocaru, Kovove Mater. 53 (2015) 17-26. |
| [24] |
W. Chen, L. Zhang, J. Phase Equilib. Diff. 40 (2019) 138-147.
DOI URL |
| [25] | L.-J. Huang, X. Huang, C.-X. Cao, J. Mater. Eng. 35 (2007) 31-33. |
| [26] | Y.-W. Zhang, S.-J. Li, Y.-L. Hao, R. Yang, Chin. J. Nonferrous Met. 20 (2010) s528-s532. |
| [27] | X.D. Zhang, L.B. Liu, J.-C. Zhao, J.L. Wang, F. Zheng, Z.P. Jin, Mater. Sci. Eng. C 39 (2014) 273-280. |
| [28] |
W. Chen, D. Zeng, P. Ren, B. Hu, W. Li, Metall. Mater. Trans. A 50 (2019) 2576-2579.
DOI URL |
| [29] |
X.-H. Yan, J. Ma, Y. Zhang, Sci. China-Phys. Mech. Astron. 62 (2019) 996111.
DOI URL |
| [30] |
P. Li, X. Ma, D. Wang, H. Zhang, Metals 9 (2019) 712.
DOI URL |
| [31] |
J. Ling, W. Chen, Y. Sheng, W. Li, L. Zhang, Y. Du, Mater. Sci. Eng. C 106 (2020) 110265.
DOI URL |
| [32] |
P. Li, X. Ma, T. Tong, Y. Wang, J. Alloys Compds. 815 (2020) 152412.
DOI URL |
| [33] |
R.V. Chernozem, M.A. Surmeneva, V.P. Ignatov, O.O. Peltek, A.A. Goncharenko, A.R. Muslimov, A.S. Timin, A.I. Tyurin, Y.F. Ivanov, C.R. Grandini, R.A. Surmenev, ACS Biomater. Sci. Eng. 6 (2020) 1487-1499.
DOI URL |
| [34] | J.-C. Zhao, Prog.Mater. Sci. 51 (2006) 557-631. |
| [35] |
A. Leyland, A. Matthews, Wear 246 (2000) 1-11.
DOI URL |
| [36] |
Y. Peng, Y. Du, P. Zhou, W. Zhang, W. Chen, L. Chen, S. Wang, G. Wen, W. Xie, Int. J. Refract. Met. Hard Mater. 42 (2014) 57-70.
DOI URL |
| [37] |
C. Marker, S.-L. Shang, J.-C. Zhao, Z.-K. Liu, Calphad 61 (2018) 72-84.
DOI URL |
| [38] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.
DOI URL |
| [39] |
Y.W. Bao, W. Wang, Y.C. Zhou, Acta Mater. 52 (2004) 5397-5404.
DOI URL |
| [40] |
C.C. Kammerer, S. Behdad, L. Zhou, F. Betancor, M. Gonzalez, B. Boesl, Y.H. Sohn, Intermetallics 67 (2015) 145-155.
DOI URL |
| [41] |
L. Zhou, A. Mehta, K. Cho, Y.H. Sohn, J. Alloys Compds. 727 (2017) 153-162.
DOI URL |
| [42] |
K. Liu, W. Ding, X. Tao, H. Chen, Y. Ouyang, Y. Du, J. Alloys Compds. 812 (2020) 152141.
DOI URL |
| [43] |
G. Rogl, A. Grytsiv, M. Gürth, A. Tavassoli, C. Ebner, A. Wünschek, S. Puchegger, V. Soprunyuk, W. Schranz, E. Bauer, H. Müller, M. Zehetbauer, P. Rogl, Acta Mater. 107 (2016) 178-195.
DOI URL |
| [44] |
A. Hynowska, E. Pellicer, J. Fornell, S. González, N. van Steenberge, S. Suri ˜nach, A. Gebert, M. Calin, J. Eckert, M.D. Baró, J. Sort, Mater. Sci. Eng. C 32 (2012) 2418-2425.
DOI URL |
| [45] |
A. Ataee, Y. Li, C. Wen, Acta Biomater. 97 (2019) 587-596.
DOI URL |
| [46] |
J. Lin, S. Ozan, Y. Li, D. Ping, X. Tong, G. Li, C. Wen, Sci. Rep. 6 (2016) 37901.
DOI URL |
| [47] |
M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scripta Mater. 55 (2006) 477-480.
DOI URL |
| [48] |
M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Mori, H. Nakajima, Acta Mater. 58 (2010) 6790-6798.
DOI URL |
| [49] |
Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Mater. Res. Lett. 7 (2019) 225-231.
DOI |
| [50] |
L. Ren, W. Xiao, H. Chang, Y. Zhao, C. Ma, L. Zhou, Mater. Sci. Eng. A 711 (2018) 553-561.
DOI URL |
| [51] |
A.I. Antipov, V.N. Moiseev, Met. Sci. Heat Treat. 39 (1997) 499-503.
DOI URL |
| [52] |
L. You, X. Song, Scripta Mater. 67 (2012) 57-60.
DOI URL |
| [53] |
Q. Wang, C. Dong, P.K. Liaw, Metall. Mater. Trans. A 46 (2015) 3440-3447.
DOI URL |
| [54] |
H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito, Phys. Rev. B 70 (2004) 174113.
DOI URL |
| [55] | S. Wei, L. Xu, Acta Metall. Sin. 56 (2020) 523-538. |
| [56] | S. Ehtemam-Haghighi, G. Cao, L.-C. Zhang, J.Alloys Compds. 692 (2017) 892-897. |
| [57] |
S. Ehtemam-Haghighi, K.G. Prashanth, H. Attar, A.K. Chaubey, G.H. Cao, L.C. Zhang, Mater. Des. 111 (2016) 592-599.
DOI URL |
| [58] |
Y.-T. Cheng, C.-M. Cheng, Appl. Phys. Lett. 73 (1998) 614-616.
DOI URL |
| [59] |
G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (1981) 533-538.
DOI URL |
| [60] |
F. Chen, Y. Gu, G. Xu, Y. Cui, H. Chang, L. Zhou, Mater. Des. 185 (2020) 108251.
DOI URL |
| [61] | D. Tabor, Proc. R. Soc. Lond. A192 (1948) 247-274. |
| [62] |
Y.-R. Zhang, W. Du, X.-D. Zhou, H.-Y. Yu, Int. J. Oral Sci. 6 (2014) 61-69.
DOI URL |
| [63] | W. Chen, L. Zhang, Y. Du, C. Tang, B. Huang, Scripta Mater. 90-91 (2014) 53-56. |
| [64] |
W. Chen, L. Zhang, J. Phase Equilib. Diff. 38 (2017) 457-465.
DOI URL |
| [65] |
C. Wen, Y. Zhang, D.Xue Wang, Yang Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
| [66] |
F.-Z. Dai, B. Wen, Y. Sun, H. Xiang, Y. Zhou, J. Mater. Sci. Technol. 43 (2020) 168-174.
DOI URL |
| [67] |
R. Wang, W. Chen, J. Zhong, L. Zhang, J. Mater. Sci. Technol. 34 (2018) 1791-1798.
DOI URL |
| [68] |
Y. Liu, C. Zhang, C. Du, Y. Du, Z. Zheng, S. Liu, L. Huang, S. Wen, Y. Jin, H. Zhang, F. Zhang, G. Kaptay, J. Mater. Sci. Technol. 42 (2020) 229-240.
DOI URL |
| [69] |
J. Zhong, L. Zhang, X. Wu, L. Chen, C. Deng, J. Mater. Sci. Technol. 48 (2020) 163-174.
DOI URL |
| [70] |
Y. Liu, C. Niu, Z. Wang, Y. Gan, Y. Zhu, S. Sun, T. Shen, J. Mater. Sci. Technol. 57 (2020) 113-122.
DOI URL |
| [1] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
| [2] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
| [3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [4] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
| [5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
| [6] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
| [7] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
| [8] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
| [9] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
| [10] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
| [11] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
| [12] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
| [13] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
| [14] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
| [15] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
