J. Mater. Sci. Technol. ›› 2021, Vol. 60: 1-7.DOI: 10.1016/j.jmst.2020.04.050
• Research Article • Next Articles
Qin Xua, Dezhi Chenb, Chongyang Tana, Xiaoqin Bia, Qi Wangb, Hongzhi Cuic, Shuyan Zhangd, Ruirun Chenb,c,*()
Received:
2020-02-20
Revised:
2020-04-12
Accepted:
2020-04-13
Published:
2021-01-10
Online:
2021-01-22
Contact:
Ruirun Chen
Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure[J]. J. Mater. Sci. Technol., 2021, 60: 1-7.
Nb | Mo | Ti | V | Si | |
---|---|---|---|---|---|
Atomic number | 1 | 2 | 1.5 | 1.3 | 3.6 |
Molar mass (g/mol) | 92.92 | 95.94 | 47.87 | 50.94 | 28.09 |
Melting temperature (°C) | 2468 | 2610 | 1670 | 1890 | 1410 |
Density (g/cm3) | 8.57 | 10.22 | 4.50 | 5.96 | 2.33 |
Atomic radius () | 1.429 | 1.363 | 1.462 | 1.316 | 1.153 |
Table 1 Physical properties of the elements.
Nb | Mo | Ti | V | Si | |
---|---|---|---|---|---|
Atomic number | 1 | 2 | 1.5 | 1.3 | 3.6 |
Molar mass (g/mol) | 92.92 | 95.94 | 47.87 | 50.94 | 28.09 |
Melting temperature (°C) | 2468 | 2610 | 1670 | 1890 | 1410 |
Density (g/cm3) | 8.57 | 10.22 | 4.50 | 5.96 | 2.33 |
Atomic radius () | 1.429 | 1.363 | 1.462 | 1.316 | 1.153 |
Fig. 2. Microstructure and phase volume of the NbMoTiVSix alloys. (a) H0Si; (b) H0.1Si; (c) H0.2Si; (d) H0.3Si; (e) H0.4Si; (f) volume fraction of silicon and eutectic.a
Alloy | The primary dendrite length /μm | The secondary dendrite length /μm |
---|---|---|
H0Si | >1200 | >150 |
H0.1Si | ~800 | ~120 |
H0.2Si | ~500 | ~80 |
H0.3Si | ~200 | ~50 |
H0.4Si | ~100 | ~30 |
Table 2 The average length of the primary and secondary dendrites of the alloys.
Alloy | The primary dendrite length /μm | The secondary dendrite length /μm |
---|---|---|
H0Si | >1200 | >150 |
H0.1Si | ~800 | ~120 |
H0.2Si | ~500 | ~80 |
H0.3Si | ~200 | ~50 |
H0.4Si | ~100 | ~30 |
Alloy | Nb (at.%) | Mo (at.%) | Ti (at.%) | V (at.%) | Si (at.%) | |
---|---|---|---|---|---|---|
H0.1Si | Nominal | 24.39 | 24.39 | 24.39 | 24.39 | 2.44 |
Silicide | 13.00 | 1.89 | 39.30 | 9.72 | 35.61 | |
Secondary BCC phase | 19.23 | 10.80 | 34.73 | 31.43 | 3.80 | |
H0.2Si | Nominal | 23.81 | 23.81 | 23.81 | 23.81 | 4.76 |
Silicide | 15.26 | 1.58 | 35.55 | 9.74 | 37.19 | |
Secondary BCC phase | 20.39 | 14.80 | 27.76 | 25.92 | 11.10 | |
H0.3Si | Nominal | 23.26 | 23.26 | 23.26 | 23.26 | 6.96 |
Silicide | 16.73 | 2.25 | 33.23 | 9.98 | 36.94 | |
Secondary BCC phase | 22.36 | 21.11 | 24.96 | 27.30 | 4.27 | |
H0.4Si | Nominal | 22.73 | 22.73 | 22.73 | 22.73 | 9.09 |
Silicide | 17.36 | 2.59 | 31.82 | 9.72 | 37.79 | |
Secondary BCC phase | 22.13 | 19.76 | 23.27 | 25.65 | 4.57 |
Table 3 EDS results of the eutectic phases.
Alloy | Nb (at.%) | Mo (at.%) | Ti (at.%) | V (at.%) | Si (at.%) | |
---|---|---|---|---|---|---|
H0.1Si | Nominal | 24.39 | 24.39 | 24.39 | 24.39 | 2.44 |
Silicide | 13.00 | 1.89 | 39.30 | 9.72 | 35.61 | |
Secondary BCC phase | 19.23 | 10.80 | 34.73 | 31.43 | 3.80 | |
H0.2Si | Nominal | 23.81 | 23.81 | 23.81 | 23.81 | 4.76 |
Silicide | 15.26 | 1.58 | 35.55 | 9.74 | 37.19 | |
Secondary BCC phase | 20.39 | 14.80 | 27.76 | 25.92 | 11.10 | |
H0.3Si | Nominal | 23.26 | 23.26 | 23.26 | 23.26 | 6.96 |
Silicide | 16.73 | 2.25 | 33.23 | 9.98 | 36.94 | |
Secondary BCC phase | 22.36 | 21.11 | 24.96 | 27.30 | 4.27 | |
H0.4Si | Nominal | 22.73 | 22.73 | 22.73 | 22.73 | 9.09 |
Silicide | 17.36 | 2.59 | 31.82 | 9.72 | 37.79 | |
Secondary BCC phase | 22.13 | 19.76 | 23.27 | 25.65 | 4.57 |
Fig. 3. Compressive properties of the alloys with different Si content. (a) strain-strength curve; (b) fracture strain; (c) ultimate strength; (d) yield strength.
Fig. 4. Compressive fracture morphologies of the NbMoTiVSix alloys. (a) H0Si; (b) H0.1Si; (c) H0.2Si; (d) H0.3Si; (e) H0.4Si; (f) TEM images after compression to 12 % strain of H0.2Si.
Strengthening caused by | H0.1Si | H0.2Si | H0.3Si | H0.4Si |
---|---|---|---|---|
Eutectic structure | 294MPa | 372MPa | 251 MPa | 181 MPa |
Refined primary BCC phase | 103MPa | 252MPa | 666 MPa | 771 MPa |
Table 4 Strengthening caused by eutectic structure and refined primary BCC phase for different alloys.
Strengthening caused by | H0.1Si | H0.2Si | H0.3Si | H0.4Si |
---|---|---|---|---|
Eutectic structure | 294MPa | 372MPa | 251 MPa | 181 MPa |
Refined primary BCC phase | 103MPa | 252MPa | 666 MPa | 771 MPa |
Fig. 6. Formation schematic of the eutectic structure in the NbMoTiVSix alloys. (a) liquid alloy; (b) silicide as nucleation particle of primary BCC phase;(c) growth up of primary BCC and segregation of Ti and Si; (d) formation of eutectic structure with lower silicon; (e) more eutectic structure with more silicon.
[1] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377(2004) 213-218.
DOI URL |
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(2004) 299-303.
DOI URL |
[3] |
A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao, J. Mater. Sci. Technol. 39(2020) 1-6.
DOI URL |
[4] |
Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124(2017) 143-150.
DOI URL |
[5] | H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 38(2020) 19-27. |
[6] |
F. Otto, A. Dlouhy, Ch. Somsen, H.. Bei, G. Eggeler, E.P. George, Acta Mater. 61(2013) 5743-5755.
DOI URL |
[7] |
Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35(2019) 902-906.
DOI URL |
[8] |
B. Zhang, M.C. Gao, Y. Zhang, S. Yang, S.M. Guo, Mater. Sci. Technol. 31(2015) 1207-1213.
DOI URL |
[9] | P.Y. Chen, C.H. Lee, S.Y. Wang, M. Seifi, J.J. Lewandowski, K.A. Dahmen, H.L. Jia, X. Xie, B.L. Chen, J.W. Yeh, C.W. Tsai, T. Yuan, P.K. Liaw, Sci. China Ser. A-mathematics Phys.Astron. Technol. Sci. 61(2018) 168-178. |
[10] |
A. Ayyagari, C. Barthelemy, B. Gwalani, R. Banerjee, T.W. Scharf, S. Mukherjee, Mater. Chem. Phys. 210(2018) 162-169.
DOI URL |
[11] |
D. Huang, J.S. Lu, Y.X. Zhuang, C.X. Tian, Y.B. Li, Corros. Sci. 158(2019), 108088.
DOI URL |
[12] |
M. Wang, Z.L. Ma, Z.Q. Xu, X.W. Cheng, J. Alloy, Compd. 803(2019) 778-785.
DOI URL |
[13] |
Q. Wang, Z. Li, S.J. Pang, X.N. Li, C. Dong, P.K. Liaw, Entropy 20 (2018) 1-23.
DOI URL |
[14] |
Q. Liu, G.F. Wang, X.C. Sui, Y.K. Liu, X. Li, J.L. Yang, J. Mater. Sci. Technol. 35(2019) 2600-2607.
DOI URL |
[15] | S. Huang, F.Y. Tian, L. Vitos, J. Mater. Res. 33(2018) 2938-2953. |
[16] | H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloy, Compd. 696(2017) 113-1150. |
[17] |
H. Chen, A. Kauffmann, S. Seils, T. Boll, C.H. Liebscher, I. Harding, K.S. Kumar, D. V. Szabo, S. Schlabach, S. Kauffmann-Weiss, F. Müller, B. Gorr, H.J. Christ, M. Heilmaier, Acta Mater. 176(2019) 123-133.
DOI URL |
[18] |
G. Laplanche, P. Gadaud, L. Perriere, I. Guillot, J.P. Couzinie, J. Alloy, Compd. 799(2019) 538-545.
DOI URL |
[19] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J. Mater. Res. 33(2018) 3092-3128.
DOI URL |
[20] |
J.Q. Yao, X.W. Liu, N. Gao, Q.H. Jiang, N. Li, G. Liu, W.B. Zhang, Z.T. Fan, Intermetallics 98 (2018) 79-88.
DOI URL |
[21] |
Z.P. Wang, Q.H. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34(2019) 349-354.
DOI URL |
[22] |
N. Gao, D.H. Lu, Y.Y. Zhao, X.W. Liu, G.H. Liu, Y. Wu, G. Liu, Z.T. Fan, Z.P. Lu, E.P. George, J. Alloy, Compd. 792(2019) 1028-1035.
DOI URL |
[23] |
G. Qin, R.R. Chen, P.K. Liaw, Y.F. Gao, X.Q. Li, H.T. Zheng, L. Wang, Y.Q. Su, J.J. Guo, H.Z. Fu, Scr. Mater. 172(2019) 51-55.
DOI URL |
[24] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765.
DOI URL |
[25] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloy, Compd. 509(2011) 6043-6048.
DOI URL |
[26] |
M.Q. Liao, Y. Liu, L.J. Min, Z.H. Lai, T.Y. Han, D.N. Yang, J.C. Zhu, Intermetallics 101 (2018) 152-164.
DOI URL |
[27] | Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Mater. Sci. Eng, (2018) 380-385. |
[28] |
M. Feuerbacher, T. Lienig, C. Thomas, Scr. Mater. 152(2019) 40-43.
DOI URL |
[29] |
Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 35(2019) 369-373.
DOI URL |
[30] |
F.Y. Tian, D.P. Wang, J. Shen, Y. Wang, Mater. Lett. 166(2016) 271-275.
DOI URL |
[31] |
Z.Q. Xu, X.W. Cheng, M. Wang, Y.W. Chen, Y.D. Tan, Z.L. Ma, Mater. Sci. Eng. A 755 (2019) 318-322.
DOI URL |
[32] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Alloy, Compd. 660(2016) 197-203.
DOI URL |
[33] |
X. Yang, Y. Zhang, P.K. Liaw, Proc. Eng. 36(2012) 292-298.
DOI URL |
[34] |
Y. Liu, Y. Zhang, H. Zhang, N.J. Wang, X. Chen, H.W. Zhang, Y.X. Li, J. Alloy, Compd. 694(2017) 869-876.
DOI URL |
[35] | S. Zhang, X.P. Guo, Rare Met. Mater. Eng. 44 (9) (2015) 2182-2188. |
[36] |
Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4(2014) 6200.
DOI URL PMID |
[1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[2] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[3] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[4] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[5] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[6] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[7] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[8] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[9] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[10] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[11] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[12] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[13] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[14] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[15] | Jinhu Zhang, Hongtao Ju, Haisheng Xu, Liang Yang, Zhichao Meng, Chen Liu, Ping Sun, Jianke Qiu, Chunguang Bai, Dongsheng Xu. Effects of heating rate on the alloy element partitioning and mechanical properties in equiaxed α+β Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||