J. Mater. Sci. Technol. ›› 2021, Vol. 70: 185-196.DOI: 10.1016/j.jmst.2020.09.001
• Research article • Previous Articles Next Articles
Qingqing Lia, Yong Zhanga, Jie Chena,b, Bugao Guoa, Weicheng Wanga, Yuhai Jinga, Yong Liua,*()
Received:
2020-09-10
Published:
2021-04-20
Online:
2021-04-30
Contact:
Yong Liu
About author:
* E-mail: liuyong@ncu.edu.cn (Y. Liu).1These authors contributed equally to this work.
Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition[J]. J. Mater. Sci. Technol., 2021, 70: 185-196.
C | Al | Si | Ti | Cr | Fe | Nb | Mo | Ni |
---|---|---|---|---|---|---|---|---|
0.38 | 0.60 | 0.19 | 0.48 | 19.04 | 1.38 | 0.77 | 1.86 | Bal. |
Table 1 Chemical compositions of the GH3039 surperalloy wire.
C | Al | Si | Ti | Cr | Fe | Nb | Mo | Ni |
---|---|---|---|---|---|---|---|---|
0.38 | 0.60 | 0.19 | 0.48 | 19.04 | 1.38 | 0.77 | 1.86 | Bal. |
Process parameters | Applied value main characteristics of this system) |
---|---|
Laser power | 2 (0-4) kW |
Laser focal length | 360 mm |
Diameter at focal point | 3.5 mm |
Laser scan rate | 4.2 mm/s |
Wire feeding rate | 24 mm/s |
Wire diameter | 1.2 (0.8/1.0/1.2 mm) |
Wire feeding angle | 30° (15°-75°) |
Shielding gas (Ar) | 20 (0-25) L/min |
Average load of UMFT | 20 (0-100) kg |
Ultrasonic amplitude | 30 μm |
Maximum ultrasonic power | 500 W |
UIPs | 0, 30 %, 60 %, 90 % (0-100 %) |
Table 2 Main characteristics of the UMFT assisted LMWD system and the process parameters applied in this study.
Process parameters | Applied value main characteristics of this system) |
---|---|
Laser power | 2 (0-4) kW |
Laser focal length | 360 mm |
Diameter at focal point | 3.5 mm |
Laser scan rate | 4.2 mm/s |
Wire feeding rate | 24 mm/s |
Wire diameter | 1.2 (0.8/1.0/1.2 mm) |
Wire feeding angle | 30° (15°-75°) |
Shielding gas (Ar) | 20 (0-25) L/min |
Average load of UMFT | 20 (0-100) kg |
Ultrasonic amplitude | 30 μm |
Maximum ultrasonic power | 500 W |
UIPs | 0, 30 %, 60 %, 90 % (0-100 %) |
Fig. 2. (a) A schematic view of single-track cladding layer showing the geometrical characteristics. (b) The deposited cladding layers treated by different UIPs. (c-f) OM images of the cladding layers treated by different UIPs: (c) 0, (d) 30 %, (e) 60 % and (f) 90 %. Geometrical characteristics: (g) H, W and h, (h) θ and D. W: clad width, H: clad height, θ: clad angle or wetting angle, h: penetration depth, D: dilution.
Fig. 3. OM images showing the grain distribution and typical grain morphologies of the longitudinal view for the cladding layers treated by different UIPs: (a) 0, (b) 30 %, (c) 60 % and (d) 90 %. (e) Equiaxed grains and (f) columnar dendrites at the top and bottom region of the cladding layers, respectively. The black arrows in the insert image in the bottom right corner illustrate the observation direction.
Fig. 4. OM images showing the grain distribution and magnified images of different regions of the cross-sectional view for the cladding layers treated by different UIPs: (a) 0, (b) 30 %, (c) 60 % and (d) 90 %.
Fig. 5. SEM images of the cross-sectional view of the cladding layers treated by (a-c) UIP-0, (d-f) UIP-60 %, insert images in (d) and (f) are magnified views of the precipitated phases. Image (g)-(k) are the EDS results of #1-#5 in.(a), (d) and (f). #1 and #3: intragranular (IG), #2 and #4: grain boundary (GB), #5: precipitated phases (marked in dotted red circle). (l) EDS results of C, Al, Ti, Nb and Mo of specific points.
Fig. 6. The grain distribution of the cross-sectional view showing the cladding layers treated by different UIPs: (a) 0, (b) 30 %, (c) 60 % and (d) 90 %. (e) Gain morphology distribution, (f) average size of equiaxed grains.
Fig. 7. Schematic diagrams illustrating (a) solidification process of AM, (b) effect of UMFT on microstructure and (c-e) columnar dendrites transform into equiaxed grains in the mush zone. S and L are solidus and liquidus, respectively. Mushy zone is the coexistent region existing between the liquid and solid phases. G is the thermal gradient.
Spectrum | C | Al | Si | P | Ti | Cr | Mn | Fe | Ni | Nb | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|
IG-0 | 0.89 | 0.77 | 0.19 | 0.00 | 0.50 | 20.61 | 0.00 | 2.22 | 72.74 | 0.47 | 1.63 |
GB-0 | 0.75 | 0.93 | 0.23 | 0.04 | 0.96 | 20.97 | 0.00 | 1.82 | 69.46 | 1.96 | 2.87 |
IG-60 % | 0.49 | 0.82 | 0.16 | 0.01 | 0.52 | 20.19 | 0.05 | 3.13 | 72.19 | 0.52 | 1.91 |
GB-60 % | 0.44 | 0.74 | 0.27 | 0.06 | 0.79 | 20.77 | 0.00 | 2.96 | 70.39 | 1.35 | 2.23 |
Phases-60 % | 2.07 | 1.82 | 0.36 | 0.11 | 8.98 | 17.80 | 0.00 | 1.57 | 50.06 | 13.65 | 3.57 |
Table 3 EDS results of point scans (marked in Fig. 5) of the cladding layers treated by UIP-0 and UIP-60 %. IG-0 and GB-0 are for the cladding layer treated by UIP-0. IG-60 %, GB-60 % and Phases-60 % are for the cladding layer treated by UIP-60 %. IG: intragranular, GB: grain boundary. Unit: wt.%.
Spectrum | C | Al | Si | P | Ti | Cr | Mn | Fe | Ni | Nb | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|
IG-0 | 0.89 | 0.77 | 0.19 | 0.00 | 0.50 | 20.61 | 0.00 | 2.22 | 72.74 | 0.47 | 1.63 |
GB-0 | 0.75 | 0.93 | 0.23 | 0.04 | 0.96 | 20.97 | 0.00 | 1.82 | 69.46 | 1.96 | 2.87 |
IG-60 % | 0.49 | 0.82 | 0.16 | 0.01 | 0.52 | 20.19 | 0.05 | 3.13 | 72.19 | 0.52 | 1.91 |
GB-60 % | 0.44 | 0.74 | 0.27 | 0.06 | 0.79 | 20.77 | 0.00 | 2.96 | 70.39 | 1.35 | 2.23 |
Phases-60 % | 2.07 | 1.82 | 0.36 | 0.11 | 8.98 | 17.80 | 0.00 | 1.57 | 50.06 | 13.65 | 3.57 |
Fig. 8. (a) The XRD patterns of the cladding layers treated by different UIPs. Diffraction peak positions of (b) (111) plane and (c) (200) plane treated by different UIPs.
Specimen | Peak (111) | 2 Theta (°) | FWHM (°) | Peak (200) | 2 Theta (°) | FWHM (°) |
---|---|---|---|---|---|---|
UIP-0 | γ, γ′ | 43.880 | 0.218 | γ, γ′ | 51.061 | 0.373 |
UIP-30 % | 43.853 | 0.309 | 51.009 | 0.427 | ||
UIP-60 % | 43.815 | 0.397 | 50.984 | 0.433 | ||
UIP-90 % | 43.880 | 0.284 | 51.023 | 0.422 |
Table 4 FWHM values and 2 Theta of the cladding layers treated by different UIPs.
Specimen | Peak (111) | 2 Theta (°) | FWHM (°) | Peak (200) | 2 Theta (°) | FWHM (°) |
---|---|---|---|---|---|---|
UIP-0 | γ, γ′ | 43.880 | 0.218 | γ, γ′ | 51.061 | 0.373 |
UIP-30 % | 43.853 | 0.309 | 51.009 | 0.427 | ||
UIP-60 % | 43.815 | 0.397 | 50.984 | 0.433 | ||
UIP-90 % | 43.880 | 0.284 | 51.023 | 0.422 |
Fig. 9. DSC curves of the top surface of the cladding layers treated by UIP-0 and UIP-60 %: (a) heating process, (b) cooling process. Tγ′ and Tcarbide are the temperatures where γ′ and carbide begin to dissolve or form, respectively. TS and TL are the solidus and the liquidus temperatures, respectively.
TS→L | Tγ′↔γ | Tcarbide↔L | TL→S | △T | Specimen | |
---|---|---|---|---|---|---|
Heating process | 1348 | 1164 | 1361 | - | - | UIP-0 |
1348 | 1183 | 1368 | - | - | UIP-60 % | |
Cooling process | - | - | - | 1387 | - | UIP-0 |
- | 1153 | - | 1378 | - | UIP-60 % | |
Phase transformation | 1348 | 1164 | 1361 | 1387 | 39 | UIP-0 |
1348 | 1168 | 1368 | 1378 | 30 | UIP-60 % |
Table 5 Results of DSC analysis and the main phase transformation temperatures (℃) of the cladding layers treated by UIP-0 and UIP-60 %.
TS→L | Tγ′↔γ | Tcarbide↔L | TL→S | △T | Specimen | |
---|---|---|---|---|---|---|
Heating process | 1348 | 1164 | 1361 | - | - | UIP-0 |
1348 | 1183 | 1368 | - | - | UIP-60 % | |
Cooling process | - | - | - | 1387 | - | UIP-0 |
- | 1153 | - | 1378 | - | UIP-60 % | |
Phase transformation | 1348 | 1164 | 1361 | 1387 | 39 | UIP-0 |
1348 | 1168 | 1368 | 1378 | 30 | UIP-60 % |
Fig. 10. (a) The microhardness distribution at different depths from the top surface, (b) the microhardness of the top surface of the cladding layers treated by different UIPs.
[1] |
D. Li, Q. Guo, S. Guo, H. Peng, Z. Wu, Mater. Des., 32(2011), pp. 696-705.
DOI URL |
[2] |
D. Ma, A.D. Stoica, Z. Wang, A.M. Beese, Mater. Sci. Eng. A, 684(2017), pp. 47-53.
DOI URL |
[3] |
L.X. Zhang, Z. Sun, Q. Xue, M. Lei, X.Y. Tian, Mater. Des., 90(2016), pp. 949-957.
DOI URL |
[4] | Y.Y. Shi, C. Zhao, M. Qi, Y.B. Liu, P.F. Deng, 4th International Conference on Intelligent Systems Design and Engineering Applications (ISDEA),Zhangjiajie, China(2013), pp. 527-530, November 06-07. |
[5] |
L.X. Zhang, Q. Chang, Z. Sun, Q. Xue, J.C. Feng, J. Manuf. Process., 38(2019), pp. 167-173.
DOI URL |
[6] |
H.J. Lee, H.K. Kim, H.U. Hong, B.S. Lee, J. Alloys. Compd., 781(2019), pp. 842-856.
DOI URL |
[7] |
J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang, Acta Mater., 117(2016), pp. 333-344.
DOI URL |
[8] |
G.A. He, F. Liu, L. Huang, Z.W. Huang, L. Jiang, Mater. Sci. Eng. A, 677(2016), pp. 496-504.
DOI URL |
[9] |
J. Zhang, R.F. Singer, Metall. Mater. Trans. A, 35(2004), pp. 939-946.
DOI URL |
[10] |
Y.Z. Zhou, A. Volek, Scr. Mater., 56(2007), pp. 537-540.
DOI URL |
[11] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature, 549(2017), pp. 365-369.
DOI URL |
[12] |
Z.Q. Wang, A.D. Stoica, D. Ma, A.M. Beese, Mater. Sci. Eng. A, 714(2018), pp. 75-83.
DOI URL |
[13] |
P.P. Kañetas, U. Özturk, J. Calvo, J.M. Cabrera, M.G. Mata, J. Mater. Process. Technol., 255(2018), pp. 204-211.
DOI URL |
[14] |
Y.Y. Zhu, J. Li, X.J. Tian, H.M. Wang, D. Liu, Mater. Sci. Eng. A, 607(2014), pp. 427-434.
DOI URL |
[15] |
A.T. Polonsky, M.P. Echlin, W.C. Lenthe, R.R. Dehoff, M.M. Kirka, T.M. Pollock, Mater. Charact., 143(2018), pp. 171-181.
DOI URL |
[16] |
S. Li, Q.S. Wei, Y.S. Shi, Z.C. Zhu, D.Q. Zhang, J. Mater. Sci. Technol., 31(2015), pp. 946-952.
DOI URL |
[17] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater., 117(2016), pp. 371-392.
DOI URL |
[18] |
E. Brandl, F. Palm, V. Michailov, B. Viehweger, C. Leyens, Mater. Des., 32(2011), pp. 4665-4675.
DOI URL |
[19] |
B. Baufeld, E. Brandl, O.V.D. Biest, J. Mater, Process. Technol., 211(2011), pp. 1146-1158.
DOI URL |
[20] |
T.E. Abioye, J. Folkes, A.T. Clare, J. Mater. Process. Technol., 213(2013), pp. 2145-2151.
DOI URL |
[21] | M. Motta, A.G. Demir, B. Previtali, Addit. Manuf., 22(2018), pp. 497-507. |
[22] | N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Wu, J. Blackburn, J. Mater, Sci. Technol., 35(2019), pp. 242-269. |
[23] |
J.J. Lewandowski, M. Seifi, Annu. Rev. Mater. Res., 46(2016), pp. 151-186.
DOI URL |
[24] |
L. Yuan, C. O’Sullivan, C.M. Gourlay, Acta Mater., 60(2012), pp. 1334-1345.
DOI URL |
[25] |
X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Y.D. Zhang, C. Esling, Acta Mater., 60(2012), pp. 3321-3332.
DOI URL |
[26] |
W. Wu, Scr. Mater., 42(2000), pp. 661-665.
DOI URL |
[27] |
X.F. Fan, J. Zhou, C.J. Qiu, B. He, J. Ye, B. Yuan, Z.Q. Pi, J. Therm. Spray Technol., 20(2011), pp. 456-464.
DOI URL |
[28] |
P.A. Colegrove, H.E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash, L.D. Cozzolino, J. Mater. Process. Technol., 213(2013), pp. 1782-1791.
DOI URL |
[29] | A.R. McAndrew, M.A. Rosales, P.A. Colegrove, J.R. Hönnige, A. Ho, R. Fayolle, K. Eyitayo, I. Stan, P. Sukrongpang, A. Crochemore, Z. Pinter, Addit. Manuf., 21(2018), pp. 340-349. |
[30] |
T. Watanabe, M. Shiroki, A. Yanagisawa, T. Sasaki, J. Mater. Process. Technol., 210(2010), pp. 1646-1651.
DOI URL |
[31] |
U. de Oliveira, V. Ocelik, J.T.M. De Hosson, Surf. Coat. Technol., 197(2005), pp. 127-136.
DOI URL |
[32] |
L. Costa, I. Felde, T. Réti, Z. Kálazi, R. Colaço, R. Vilar, B. Verö, Mater. Sci. Forum, 414-415(2003), pp. 385-394.
DOI URL |
[33] |
M. Ansari, R. Shoja Razavi, M. Barekat, Opt. Laser Technol., 86(2016), pp. 136-144.
DOI URL |
[34] |
M. Nabhani, R.S. Razavi, M. Barekat, Opt. Laser Technol., 100(2018), pp. 265-271.
DOI URL |
[35] |
Z.P. Zhou, L. Huang, Y.J. Shang, Y.P. Li, L. Jiang, Q. Lei, Mater. Des., 160(2018), pp. 1238-1249.
DOI URL |
[36] | D.H. Liu, Y. Wang, Addit. Manuf., 25(2019), pp. 551-562. |
[37] | H.L. Wei, G.L. Knapp, T. Mukherjee, T. DebRoy, Addit. Manuf., 25(2019), pp. 448-459. |
[38] |
Z.Y. Liu, H. Qi, Acta Mater., 87(2015), pp. 248-258.
DOI URL |
[39] |
M. Gäumann, C. Bezenon, P. Canalis, W. Kurz, Acta Mater., 49(2001), pp. 1051-1062.
DOI URL |
[40] |
J. Song, Y.X. Chew, G.J. Bi, J.M. Bai, S.K. Moon, Mater. Des., 137(2018), pp. 286-297.
DOI URL |
[41] |
M. Gäumann, S. Henry, F. Cleton, J.D. Wagniere, W. Kurz, Mater. Sci. Eng. A, 271(1999), pp. 232-241.
DOI URL |
[42] | A. Plotkowski, M.M. Kirka, S.S. Babu, Addit. Manuf., 18(2017), pp. 256-268. |
[43] |
R. Chen, Q.Y. Xu, B.C. Liu, J. Mater. Sci. Technol., 30(2014), pp. 1311-1320.
DOI URL |
[44] |
D.A. Pineda, M.A. Martorano, Acta Mater., 61(2013), pp. 1785-1797.
DOI URL |
[45] |
G. Heiberg, K. Nogita, A.K. Dahle, L. Arnberg, Acta Mater., 50(2002), pp. 2537-2546.
DOI URL |
[46] |
Y.J. Liang, J. Li, A. Li, X. Cheng, S. Wang, H.M. Wang, J. Alloys. Compd., 697(2017), pp. 174-181.
DOI URL |
[47] |
Y.J. Liang, H.M. Wang, Mater. Des., 102(2016), pp. 297-302.
DOI URL |
[48] |
S.A. David, J.M. Vitek, Int. Mater. Rev., 34(1989), pp. 213-245.
DOI URL |
[49] |
D. Shu, B.D. Sun, J.W. Mi, P.S. Grant, Metall. Mater. Trans. A, 43(2012), pp. 3755-3766.
DOI URL |
[50] |
Q.M. Liu, Q.J. Zhai, F.P. Qi, Y. Zhang, Mater. Lett., 61(2007), pp. 2422-2425.
DOI URL |
[51] | P.W. Liu, Z. Wang, Y.H. Xiao, M.F. Horstemeyer, X.Y. Cui, L. Chen, Addit. Manuf., 26(2019), pp. 22-29. |
[52] |
T. Yuan, S.D. Kou, Z. Luo, Acta Mater., 106(2016), pp. 144-154.
DOI URL |
[53] |
M.C. Flemings, Metall. Trans., 22(1991), pp. 269-293.
DOI URL |
[54] | F.D. Ning, Y.B. Hu, Z.C. Liu, X.L. Wang, Y.Z. Li, W.L. Cong, J. Manuf. Sci. Eng., 140(2018), Article 061012. |
[55] |
J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Mater. Sci. Eng. A, 676(2016), pp. 395-405.
DOI URL |
[56] |
J.S. Zuback, P. Moradifar, Z. Khayat, N. Alem, T.A. Palmer, J. Alloys. Compd., 798(2019), pp. 446-457.
DOI URL |
[57] |
S. Sui, H. Tan, J. Chen, C.L. Zhong, Z. Li, W. Fan, A. Gasser, W.D. Huang, Acta Mater., 164(2019), pp. 413-427.
DOI URL |
[58] |
G.J. Bi, C.N. Sun, H.C. Chen, F.L. Ng, C.C.K. Ma, Mater. Des., 60(2014), pp. 401-408.
DOI URL |
[59] |
G.R. Leverant, M. Gell, Metall. Trans. A, 6(1975), pp. 367-371.
DOI URL |
[60] |
N. Li, Y.D. Li, Y.X. Li, Y.H. Wu, Y.F. Zheng, Y. Han, Mater. Sci. Eng. C, 35(2014), pp. 314-321.
DOI URL |
[61] |
Z.X. Shi, J.X. Dong, M.C. Zhang, L. Zheng, J. Alloys. Compd., 571(2013), pp. 168-177.
DOI URL |
[62] |
J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang, Science, 340(2013), pp. 957-960.
DOI URL |
[63] |
M. Terner, H.Y. Yoon, H.U. Hong, S.M. Seo, J.H. Gu, J.H. Lee, Mater. Charact., 105(2015), pp. 56-63.
DOI URL |
[64] |
C. Yang, Q.Y. Xu, X.L. Su, B.C. Liu, Acta Mater., 175(2019), pp. 286-296.
DOI URL |
[65] |
P. Rong, N. Wang, L. Wang, R.N. Yang, W.J. Yao, J. Alloys. Compd., 676(2016), pp. 181-186.
DOI URL |
[66] |
Y.Z. Zhou, A. Volek, Scr. Mater., 54(2006), pp. 2169-2174.
DOI URL |
[67] |
E. Chauvet, P. Kontis, E.A. Jagle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, Acta Mater., 142(2018), pp. 82-94.
DOI URL |
[68] | J.R. Cahoon, W.H. Broughto, A.R. Kutzak, Metall. Trans., 2(1971), pp. 1979-1983. |
[69] |
J.S. Keist, T.A. Palmer, Mater. Sci. Eng. A, 693(2017), pp. 214-224.
DOI URL |
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[3] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[4] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[5] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[6] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[7] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[8] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[9] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[10] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[11] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[12] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[13] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[14] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[15] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||