J. Mater. Sci. Technol. ›› 2021, Vol. 70: 175-184.DOI: 10.1016/j.jmst.2020.08.036
• Research Article • Previous Articles Next Articles
Liping Han, Bo Li, Hao Wen, Yuxi Guo*(), Zhan Lin*(
)
Received:
2020-08-03
Revised:
2020-08-23
Accepted:
2020-08-23
Published:
2021-04-20
Online:
2021-04-15
Contact:
Yuxi Guo,Zhan Lin
About author:
zhanlin@gdut.edu.cn (Z. Lin).1These authors contributed equally to this work.
Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction[J]. J. Mater. Sci. Technol., 2021, 70: 175-184.
Fig. 4. (a) UV-vis absorption spectral pattern of mixed pollutants on 21TB under visible light. (b) Under visible light, UV-vis absorption spectral pattern of mixed pollutants on BiOBr. (c) Photocatalytic degradation curves of mixed pollutants on BiOBr (?) and 21TB (▲), and (d) apparent photodegradation rate constants of mixed pollutants on 21TB and BiOBr.
Catalysts | Contaminants | Amount of catalyst | Contaminant content | Degradation efficiency | Ref. |
---|---|---|---|---|---|
Ag2CO3-g-C3N4 | RhB | 100 mg | 10 mg l-1, 100 ml | 95.00 %, 54 min | [ |
ZnFe2O4-graphene | 60 mg | 15 mg l-1, 60 ml | 15.00 %, 180 min | [ | |
K/Al-ZnO | 150 mg | 10 mg l-1, 200 ml | 54.96 %, 90 min | [ | |
g-C3N4 | MO | 20 mg | 10 mg l-1, 50 ml | 78.50 %, 240 min | [ |
Er3+-Bi5O7I | 40 mg | 10 mg l-1, 40 ml | 70.00 %, 90 min | [ | |
CdIn2S4-TiO2 | 50 mg | 10 mg l-1, 70 ml | 85.90 %, 180 min | [ | |
Co3O4-Ag-Bi2WO6 | TCH | 50 mg | 10 mg l-1, 50 ml | 57.20 %, 60 min | [ |
BiOI | 50 mg | 30 mg l-1, 50 ml | 61.00 %, 300 min | [ | |
BiOBr0.75I0.25-BiOIO3 | 50 mg | 10 mg l-1, 50 ml | 17.60 %, 120 min | [ | |
ZnIn2S4-Fe3O4 | BPA | 10 mg | 20 mg l-1, 50 ml | 34.50 %,180 min | [ |
AgI-BiOIO3 | 20 mg | 10 mg l-1, 50 ml | 44.60 %, 300 min | [ | |
Ag-AgBr-BiOIO3 | 20 mg | 10 mg l-1, 50 ml | 20.00 %, 300 min | [ | |
TiO2(B)-BiOBr | RhB, MO, TCH, BPA | 20 mg | 40 mg l-1, 10 mg l-1, 10 mg l-1, 10 mg l-1, 100 ml | 97.66 %, 85.75 %, 61.87 %, 41.83 %, 50 min | Our work |
Table 1 Comparison of single RhB, MO, TCH, and BPA degradation efficiencies by other photocatalysts and simultaneous degradation of four pollutants in this work.
Catalysts | Contaminants | Amount of catalyst | Contaminant content | Degradation efficiency | Ref. |
---|---|---|---|---|---|
Ag2CO3-g-C3N4 | RhB | 100 mg | 10 mg l-1, 100 ml | 95.00 %, 54 min | [ |
ZnFe2O4-graphene | 60 mg | 15 mg l-1, 60 ml | 15.00 %, 180 min | [ | |
K/Al-ZnO | 150 mg | 10 mg l-1, 200 ml | 54.96 %, 90 min | [ | |
g-C3N4 | MO | 20 mg | 10 mg l-1, 50 ml | 78.50 %, 240 min | [ |
Er3+-Bi5O7I | 40 mg | 10 mg l-1, 40 ml | 70.00 %, 90 min | [ | |
CdIn2S4-TiO2 | 50 mg | 10 mg l-1, 70 ml | 85.90 %, 180 min | [ | |
Co3O4-Ag-Bi2WO6 | TCH | 50 mg | 10 mg l-1, 50 ml | 57.20 %, 60 min | [ |
BiOI | 50 mg | 30 mg l-1, 50 ml | 61.00 %, 300 min | [ | |
BiOBr0.75I0.25-BiOIO3 | 50 mg | 10 mg l-1, 50 ml | 17.60 %, 120 min | [ | |
ZnIn2S4-Fe3O4 | BPA | 10 mg | 20 mg l-1, 50 ml | 34.50 %,180 min | [ |
AgI-BiOIO3 | 20 mg | 10 mg l-1, 50 ml | 44.60 %, 300 min | [ | |
Ag-AgBr-BiOIO3 | 20 mg | 10 mg l-1, 50 ml | 20.00 %, 300 min | [ | |
TiO2(B)-BiOBr | RhB, MO, TCH, BPA | 20 mg | 40 mg l-1, 10 mg l-1, 10 mg l-1, 10 mg l-1, 100 ml | 97.66 %, 85.75 %, 61.87 %, 41.83 %, 50 min | Our work |
Fig. 5. (a) Loops for the photodegradation of RhB, MO, TCH, and BPA over 21TB under visible light. (b) XRD curves of 21TB before and after reaction. (c, d) SEM and (e, f) TEM patterns of 21TB before and after reaction, respectively.
[1] | F. Guo, X. Huang, Z. Chen, H. Sun, L. Chen, Chem. Eng. J ., 395(2020), Article 125118. |
[2] |
E. Han, Y. Li, Q. Wang, W. Huang, L. Luo, W. Hu, G. Huang, J. Mater. Sci. Technol., 35(2019), pp. 2288-2296.
DOI URL |
[3] |
D. Lu, P. Fang, X. Liu, S. Zhai, C. Li, X. Zhao, J. Ding, R. Xiong, Appl. Catal. B-Environ., 179(2015), pp. 558-573.
DOI URL |
[4] |
Y. Guo, H. Li, W. Ma, W. Shi, Y. Zhu, W. Choi, Carbon Energy, 2(2020), pp. 308-349.
DOI URL |
[5] | H. Wang, B. Liao, T. Lu, Y. Ai, G. Liu, J. Hazard. Mater ., 385(2020), Article 121552. |
[6] |
S. Kim, Y. Cho, R. Rhee, J.H. Park, Carbon Energy, 2(2020), pp. 44-53.
DOI URL |
[7] |
Y. Zheng, Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, X. Tang, Y. Zhang, Y. Zhao, J. Mater. Sci. Technol., 41(2020), pp. 117-126.
DOI URL |
[8] | Y. Cheng, M. Bai, J. Su, C. Fang, H. Li, J. Chen, J. Jiao, J. Mater. Sci. Technol., 35(2019), pp. 1515-1522. |
[9] | L. Han, Y. Guo, Z. Lin, H. Huang, Colloid. Surf. A, 603(2020), Article 125233. |
[10] | Y. Zhang, J. Xu, J. Mei, S. Sarina, Z. Wu, T. Liao, C. Yan, Z. Sun, J. Hazard. Mater ., 394(2020), Article 122529. |
[11] | M. Ratova, L. Tosheva, P.J. Kelly, B. Ohtani, Sustain. Mater. Technol ., 22(2019), Article e00112. |
[12] | Z. Sun, T. Liao, W. Li, Y. Qiao, K. Ostrikov, Adv. Funct. Mater., 29(2019), Article 1901460. |
[13] | H. Chen, Y. Yang, M. Hong, J. Chen, G. Suo, X. Hou, L. Feng, Z. Chen, Sustain. Mater. Technol., 21(2019), Article e00105. |
[14] | H. Wu, H. Tan, C. Toe, J. Scott, L. Wang, R. Amal, Y. Ng, Adv. Mater., 32(2020), Article 1904717. |
[15] |
H.L. Tan, F.F. Abdi, Y.H. Ng, Chem. Soc. Rev., 48(2019), pp. 1255-1271.
DOI URL |
[16] |
C. Xue, T. Zhang, S. Ding, J. Wei, G. Yang, ACS Appl. Mater. Interfaces, 9(2017), pp. 16091-16102.
DOI URL |
[17] |
C. Xue, X. Xu, G. Yang, S. Ding, RSC Adv., 5(2015), pp. 102228-102237.
DOI URL |
[18] |
X. Wei, C. Chen, S. Guo, F. Guo, X. Li, X. Wang, H. Cui, L. Zhao, W. Li, J. Mater. Chem. A, 2(2014), pp. 4667-4675.
DOI URL |
[19] |
X.X. Wei, H. Cui, S. Guo, L. Zhao, W. Li, J. Hazard. Mater., 263(2013), pp. 650-658.
DOI URL |
[20] |
Y. Wang, J. Sunarso, B. Zhao, C. Ge, G. Chen, Ceram. Int., 43(2017), pp. 15769-15776.
DOI URL |
[21] |
L. Ruan, J. Liu, Q. Zhou, J. Hu, G. Xu, X. Shu, Y. Wu, New J. Chem., 38(2014), pp. 3022-3028.
DOI URL |
[22] |
Y. Mei, Y. Su, Z. Li, S. Bai, M. Yuan, L. Li, Z. Yan, J. Wu, L.W. Zhu, Dalton Trans., 46(2017), pp. 347-354.
DOI URL |
[23] |
X. Li, B. Han, X. Wang, P. Bai, L. Sun, Q. Hao, K. Yu, C. Liang, New J. Chem., 44(2020), pp. 1905-1911.
DOI URL |
[24] | W. Deng, F. Pan, B. Batchelor, B. Jung, P. Zhang, A. Abdel-Wahab, H. Zhou, Y. Li, Environ. Sci. Water Res., 5(2019), pp. 769-781. |
[25] |
Y. Cai, J. Song, X. Liu, X. Yin, X. Li, J. Yu, B. Ding, Environ. Sci-Nano, 5(2018), pp. 2631-2640.
DOI URL |
[26] |
G. Xiang, T. Li, J. Zhuang, X. Wang, Chem. Commun., 46(2010), pp. 6801-6803.
DOI URL |
[27] |
G. Xiang, D. Wu, J. He, X. Wang, Chem. Commun., 47(2011), pp. 11456-11458.
DOI URL |
[28] |
C.T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, W.Y. Tam, Adv. Mater., 23(2011), p. 5624.
DOI URL |
[29] | W. An, K. Sun, J. Hu, W. Cui, L. Liu, Appl. Surf. Sci., 504(2020), Article 144345. |
[30] |
J. Ai, L. Hu, Z. Zhou, L. Cheng, W. Liu, K. Su, R. Zhang, Z. Chen, W. Li, Ceram. Int., 46(2020), pp. 11786-11798.
DOI URL |
[31] |
W. Jia, L. Gong, Y. Shang, Inorg. Chem. Commun., 100(2019), pp. 32-37.
DOI URL |
[32] | I.A. Abdelhafeez, J. Chen, X. Zhou, Sep. Purif. Technol., 250(2020), Article 117085. |
[33] | M. Hojamberdiev, G. Zhu, S. Li, Y. Zhang, J. Gao, R. Zhu, F. Zhang, Mater. Res. Bull., 123(2020), Article 110701. |
[34] |
Z. Peng, Y. Jiang, X. Wang, R. Zhang, H. Xu, Y. Xiao, X. Jing, J. Zhang, Y. Liu, L. Ni, Ceram. Int., 45(2019), pp. 15942-15953.
DOI URL |
[35] |
J. Wan, P. Xue, R. Wang, L. Liu, E. Liu, X. Bai, J. Fan, X. Hu, Appl. Surf. Sci., 483(2019), pp. 677-687.
DOI URL |
[36] |
J. Xu, Y. Hu, C. Zeng, Y. Zhang, H. Huang, J. Colloid Interface Sci., 505(2017), pp. 719-727.
DOI URL |
[37] |
C. Zeng, Y. Hu, H. Huang, ACS Sustain. Chem. Eng., 5(2017), pp. 3897-3905.
DOI URL |
[38] | Q. Liang, W. Gao, C. Liu, S. Xu, Z. Li, J. Hazard. Mater., 392(2020), Article 122500. |
[39] |
F. Chen, H. Huang, Y. Zhang, T. Zhang, Chin. Chem. Lett., 28(2017), pp. 2244-2250.
DOI URL |
[40] |
F. Chen, H. Huang, C. Zeng, X. Du, Y. Zhang, ACS Sustain. Chem. Eng., 5(2017), pp. 7777-7791.
DOI URL |
[41] |
L. Han, Y. Lv, B. Li, H. Wen, H. Huang, Y. Guo, Z. Lin, J. Colloid Interface Sci., 580(2020), pp. 1-10.
DOI URL |
[42] |
H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Angew. Chem. Int. Ed., 56(2017), pp. 11860-11864.
DOI URL |
[43] |
C. Xue, T. Zhang, S. Ding, J. Wei, G. Yang, ACS Appl. Mater. Interfaces, 9(2017), pp. 16091-16102.
DOI URL |
[1] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[2] | Dapeng Cao, Jingbo Zhang, Anchen Wang, Xiaohui Yu, Baoxiu Mi. Fabrication of Cr-doped SrTiO3/Ti-doped α-Fe2O3 photoanodes with enhanced photoelectrochemical properties [J]. J. Mater. Sci. Technol., 2020, 56(0): 189-195. |
[3] | Qiaoqiao Li, Wenli Zhao, Zicheng Zhai, Kaixu Ren, Tingyu Wang, Hao Guan, Haifeng Shi. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading [J]. J. Mater. Sci. Technol., 2020, 56(0): 216-226. |
[4] | Xintong Liu, Shaonan Gu, Yanjun Zhao, Guowei Zhou, Wenjun Li. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review [J]. J. Mater. Sci. Technol., 2020, 56(0): 45-68. |
[5] | Zizhan Liang, Rongchen Shen, Hau Ng Yun, Peng Zhang, Quanjun Xiang, Xin Li. A review on 2D MoS2 cocatalysts in photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 89-121. |
[6] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
[7] | Zhongfu Li, Zhaohui Wu, Rongan He, Long Wan, Shiying Zhang. In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 56(0): 151-161. |
[8] | Minghui Xiong, Juntao Yan, Bo Chai, Guozhi Fan, Guangsen Song. Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 179-188. |
[9] | Angga Hermawan, Yusuke Asakura, Miki Inada, Shu Yin. A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature [J]. J. Mater. Sci. Technol., 2020, 51(0): 119-129. |
[10] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
[11] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[12] | Miao-Miao Fang, Jun-Xia Shao, Xiang-Gang Huang, Jin-Yi Wang, Wei Chen. Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation [J]. J. Mater. Sci. Technol., 2020, 56(0): 133-142. |
[13] | Linxing Meng, Wei Tian, Fangli Wu, Fengren Cao, Liang Li. TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2019, 35(8): 1740-1746. |
[14] | Mengyan Zhang, Tao Ning, Jie Chen, Lijie Sun, Lihua Zhou. Improvement on the interface properties of p-GaAs/n-InP heterojunction for wafer bonded four-junction solar cells [J]. J. Mater. Sci. Technol., 2019, 35(3): 330-333. |
[15] | Thirupathi Boningari, Siva Nagi Reddy Inturi, Makram Suidan, Panagiotis G.Smirniotis. Novel continuous single-step synthesis of nitrogen-modified TiO2 by flame spray pyrolysis for photocatalytic degradation of phenol in visible light [J]. J. Mater. Sci. Technol., 2018, 34(9): 1494-1502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||