J. Mater. Sci. Technol. ›› 2021, Vol. 70: 168-175.DOI: 10.1016/j.jmst.2020.08.035
• Research Article • Previous Articles Next Articles
Haonan Caoa, Meiqi Yub,*(
), Long Zhanga,*(
), Zhaoxing Zhanga, Xinlin Yanc, Peng Lia, Chuang Yud
Received:2020-07-08
Revised:2020-08-12
Accepted:2020-08-16
Published:2021-04-20
Online:2021-04-30
Contact:
Meiqi Yu,Long Zhang
About author:*E-mail: meiqiyu@ysu.edu.cn (M. Yu),1The authors make equal contribution.
Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing[J]. J. Mater. Sci. Technol., 2021, 70: 168-175.
Fig. 1. (a) The schematic illustration of the synthesis process of NSSC. (b) XRD patterns of NSSC. (c) SEM image of NSSC-0.05 powders. (d) The peak position of I1 (see the inset) peak as functions of x obtained from Raman spectra. The inset shows the Raman spectrum of selected sample. (e) DSC of NSSC-0.05 in the temperature range of 50-400 °C. The inset shows the TG curves of NSSC-0.05 in the temperature range of 30-300 °C.
Fig. 2. (a) Ionic conductivity as a function of Cl concentration in NSSC. Galvanostatic polarization cycling of the Na/SE/Na symmetric cells with the NSSC-0.05 (b) and NSSC-0 (c) electrolytes. (d) Galvanostatic intermittent cycling of the Na/NSSC-0.15/Na cell at a step-increased current density. (e) Galvanostatic cycling of the Na/STNSS/Na cell at 0.07 mA cm-2. The inset is an enlarged view of the initial 20 cycles. (f) The total resistances of the symmetric cells with STNSS, NSSC-0, and NSSC-0.05 electrolytes before and after galvanostatic cycling at 0.07 mA cm-2 for 20 cycles.
Fig. 3. (a) SEM cross-sectional image and corresponding EDS mapping of Na, Sb, and S elements for NSSC-0 after galvanostatic polarization cycling. (b) The electronic conductivity of the STNSS, NSSC-0, and NSSC-0.05 electrolytes.
Fig. 4. Cross-sectional SEM morphology images for the interface layer of NSSC-0.05 (a), NSSC-0 (b), and STNSS (c). (d) SEM image and EDS mapping of Na, Sb, and S elements for STNSS after galvanostatic cycling. (e) EDS mapping of Na, Sb, S, and Cl elements for NSSC-0.05 after galvanostatic cycling.
Fig. 6. The charge-discharge profiles of the TiS2/STNSS/Na (a), TiS2/NSSC-0/Na (b), and TiS2/NSSC-0.05/Na (c) batteries. (d) Rate capability of the FeS2/NSSC-0.05/Na15Sn4 battery. (e) Representative charge-discharge curves of the FeS2/NSSC-0.05/Na15Sn4 battery at different current densities.
| [1] |
T. Liu, Y. Zhang, Z. Jiang, X. Zeng, J. Ji, Z. Li, X. Gao, M. Sun, Z. Lin, M. Ling, J. Zheng, C. Liang, Energy Environ. Sci., 12(2019), pp. 1512-1533.
DOI URL |
| [2] | Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu, R. Chen, Adv. Mater., 31(2019), Article 1808393. |
| [3] |
W. Hou, X. Guo, X. Shen, K. Amine, H. Yu, J. Lu, Nano Energy, 52(2018), pp. 279-291.
DOI URL |
| [4] |
Y. Zhao, K.R. Adair, X. Sun, Energy Environ. Sci., 11(2018), pp. 2673-2695.
DOI URL |
| [5] |
A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc, A. Matsuda, N. Machida, A. Hayashi, M. Tatsumisago, Nat. Rev. Chem., 3(2019), pp. 189-198.
DOI URL |
| [6] |
C. Zhao, Y. Lu, J. Yue, D. Pan, Y. Qi, Y.-S. Hu, L. Chen, J. Energy Chem., 27(2018), pp. 1584-1596.
DOI URL |
| [7] | C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.-S. Hu, L. Chen, Adv. Energy Mater., 8 (2018), Article 1703012. |
| [8] | S. Chen, D. Xie, G. Liu, J.P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, X. Yao, Energy Storage Mater., 14(2018), pp. 58-74. |
| [9] |
D. Zhang, X. Cao, D. Xu, N. Wang, C. Yu, W. Hu, X. Yan, J. Mi, B. Wen, L. Wang, L. Zhang, Electrochim. Acta, 259(2018), pp. 100-109.
DOI URL |
| [10] |
Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen, J. Power Sources, 410-411(2019), pp. 162-170.
DOI URL |
| [11] |
A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nat. Commun., 3(2012), p. 856.
DOI URL |
| [12] |
M.Ja.U. Henseler, J. Solid State Chem., 99(1990), pp. 110-119.
DOI URL |
| [13] |
A. Hayashi, K. Noi, N. Tanibata, M. Nagao, M. Tatsumisago, J. Power Sources, 258(2014), pp. 420-423.
DOI URL |
| [14] |
N. Tanibata, K. Noi, A. Hayashi, M. Tatsumisago, RSC Adv., 4(2014), pp. 17120-17123.
DOI URL |
| [15] |
N. Tanibata, K. Noi, A. Hayashi, N. Kitamura, Y. Idemoto, M. Tatsumisago, ChemElectroChem, 1(2014), pp. 1130-1132.
DOI URL |
| [16] | Z. Yu, S.L. Shang, J.H. Seo, D. Wang, X. Luo, Q. Huang, S. Chen, J. Lu, X. Li, Z.K. Liu, D. Wang, Adv. Mater., 29(2017), Article 1605561. |
| [17] |
S.-H. Bo, Y. Wang, J.C. Kim, W.D. Richards, G. Ceder, Chem. Mater., 28(2015), pp. 252-258.
DOI URL |
| [18] | L. Zhang, K. Yang, J. Mi, L. Lu, L. Zhao, L. Wang, Y. Li, H. Zeng, Adv. Energy Mate., 5(2015), Article 1501294. |
| [19] |
N. Wang, K. Yang, L. Zhang, X. Yan, L. Wang, B. Xu, J. Mater. Sci., 53(2017), pp. 1987-1994.
DOI URL |
| [20] | J.W. Heo, A. Banerjee, K.H. Park, Y.S. Jung, S.-T. Hong, Adv. Energy Mater., 8 (2018), Article 1702716. |
| [21] |
R.P. Rao, H. Chen, L.L. Wong, S. Adams, J. Mater. Chem. A, 5(2017), pp. 3377-3388.
DOI URL |
| [22] |
S.-H. Bo, Y. Wang, J.C. Kim, W.D. Richards, G. Ceder, Chem. Mater., 28(2015), pp. 252-258.
DOI URL |
| [23] | L. Zhang, D. Zhang, K. Yang, X. Yan, L. Wang, J. Mi, B. Xu, Y. Li, Adv. Sci., 3 (2016), Article 1600089. |
| [24] |
A. Banerjee, K.H. Park, J.W. Heo, Y.J. Nam, C.K. Moon, S.M. Oh, S.T. Hong, Y.S. Jung, Angew. Chem., 55(2016), pp. 9634-9638.
DOI URL |
| [25] |
H. Wang, Y. Chen, Z.D. Hood, G. Sahu, A.S. Pandian, J.K. Keum, K. An, C. Liang, Angew. Chem. Int. Ed., 55(2016), pp. 8551-8555.
DOI URL |
| [26] |
T.W. Kim, K.H. Park, Y.E. Choi, J.Y. Lee, Y.S. Jung, J. Mater. Chem. A, 6(2018), pp. 840-844.
DOI URL |
| [27] |
Z. Zhang, H. Cao, M. Yang, X. Yan, C. Yu, D. Liu, L. Zhang, J. Energy Chem., 48(2020), pp. 250-258.
DOI URL |
| [28] |
M. Duchardt, S. Neuberger, U. Ruschewitz, T. Krauskopf, W.G. Zeier, J. Schmedt auf der Günne, S. Adams, B. Roling, S. Dehnen, Chem. Mater., 30(2018), pp. 4134-4139.
DOI URL |
| [29] |
M. Duchardt, U. Ruschewitz, S. Adams, S. Dehnen, B. Roling, Angew. Chem. Int. Ed., 57(2018), pp. 1351-1355.
DOI URL |
| [30] |
Z. Zhang, E. Ramos, F. Lalère, A. Assoud, K. Kaup, P. Hartman, L.F. Nazar, Energy Environ. Sci., 11(2018), pp. 87-93.
DOI URL |
| [31] |
C.K. Moon, H.-J. Lee, K.H. Park, H. Kwak, J.W. Heo, K. Choi, H. Yang, M.-S. Kim, S.-T. Hong, J.H. Lee, Y.S. Jung, ACS Energy Lett., 3(2018), pp. 2504-2512.
DOI URL |
| [32] |
I.H. Chu, C.S. Kompella, H. Nguyen, Z. Zhu, S. Hy, Z. Deng, Y.S. Meng, S.P. Ong, Sci. Rep., 6(2016), p. 33733.
DOI URL |
| [33] |
Y. Hibi, N. Tanibata, A. Hayashi, M. Tatsumisago, Solid State Ion., 270(2015), pp. 6-9.
DOI URL |
| [34] |
H. Huang, H.H. Wu, X. Wang, B. Huang, T.Y. Zhang, Phys. Chem. Chem. Phys., 20(2018), pp. 20525-20533.
DOI URL |
| [35] |
E.A. Wu, C.S. Kompella, Z. Zhu, J.Z. Lee, S.C. Lee, I.H. Chu, H. Nguyen, S.P. Ong, A. Banerjee, Y.S. Meng, ACS Appl. Mater. Interfaces, 10(2018), pp. 10076-10086.
DOI URL |
| [36] | Y. Tian, Y. Sun, D.C. Hannah, Y. Xiao, H. Liu, K.W. Chapman, S.-H. Bo, G. Ceder, Joule, 3(2019), pp. 1037-1050. |
| [37] |
Y. Liu, L. Zhang, D. Liu, W. Hu, X. Yan, C. Yu, H. Zeng, T. Shen, Nanoscale, 11(2019), pp. 15497-15507.
DOI URL |
| [38] |
W.M.a.A. Reisinger, Spectrochim Acta, 36(1980), pp. 365-370.
DOI URL |
| [39] |
M. Suyama, A. Kato, A. Sakuda, A. Hayashi, M. Tatsumisago, Electrochim. Acta, 286(2018), pp. 158-162.
DOI URL |
| [40] |
N.J. J. de Klerk, M. Wagemaker, Chem. Mater., 28(2016), pp. 3122-3130.
DOI URL |
| [41] |
L. Chen, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, ACS Appl. Mater. Interfaces, 7(2015), pp. 2073-2081.
DOI URL |
| [42] | F. Han, J. Yue, X. Zhu, C. Wang, Adv. Energy Mater., 8 (2018), Article 1703644. |
| [43] |
A. Sharafi, H.M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, J. Power Sources, 302(2016), pp. 135-139.
DOI URL |
| [44] |
C.L. Tsai, V. Roddatis, C.V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, O. Guillon, ACS Appl. Mater. Interfaces, 8(2016), pp. 10617-10626.
DOI URL |
| [45] |
Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara, G. Ceder, Nat. Rev. Mater., 5(2019), pp. 105-126.
DOI URL |
| [46] |
Y. Tian, T. Shi, W.D. Richards, J.C. Li, J.C. Kim, S.-H. Bo, G. Ceder, Energy Environ. Sci., 10(2017), pp. 1150-1166.
DOI URL |
| [47] | F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. Wang Nat, Energy, 4(2019), pp. 187-196. |
| [48] |
P. Hu, Y. Zhang, X. Chi, K. Kumar Rao, F. Hao, H. Dong, F. Guo, Y. Ren, L.C. Grabow, Y. Yao, ACS Appl. Mater. Interfaces, 11(2019), pp. 9672-9678.
DOI URL |
| [49] | H. Nguyen, A. Banerjee, X. Wang, D. Tan, E. Wu, J.M. Doux, R. Stephens, G. Verbist, Y. Meng, J. Power Sources, 435(2019), Article 126623. |
| [50] | F. Li, Q. Liu, J. Hu, J. Yang, J. Ma, J. Phys. D Appl. Phys., 53(2020), Article 353001. |
| [51] |
B. Xu, S. Qi, M. Jin, X. Cai, L. Lai, Z. Sun, X. Han, Z. Lin, H. Shao, P. Peng, Z. Xiang, J.E. ten Elshof, R. Tan, C. Liu, Z. Zhang, X. Duan, J. Ma, Chin. Chem. Lett., 30(2019), pp. 2053-2064.
DOI URL |
| [52] |
M. Wu, J. Liao, L. Yu, R. Lv, P. Li, W. Sun, R. Tan, X. Duan, L. Zhang, F. Li, J. Kim, K.H. Shin, H. Seok Park, W. Zhang, Z. Guo, H. Wang, Y. Tang, G. Gorgolis, C. Galiotis, J. Ma, Chem.-Asian J., 15(2020), pp. 995-1013.
DOI URL |
| [53] |
J. Yang, H.-L. Wan, Z.-H. Zhang, G.-Z. Liu, X.-X. Xu, Y.-S. Hu, X.-Y. Yao, Rare Metals, 37(2018), pp. 480-487.
DOI URL |
| [1] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
| [2] | Linggen Kong, Inna Karatchevtseva, Hanliang Zhu, Meng Jun Qin, Zaynab Aly. Synthesis and microstructure characterization of tetragonal Zr1-xTixO2 (x = 0-1) solid solutions [J]. J. Mater. Sci. Technol., 2019, 35(9): 1966-1976. |
| [3] | Q. Zheng, Z.R. Zhang, J. Du, L.L. Lin, W.X. Xia, J. Zhang, B.R. Bian, J.P. Liu. A novel direct reduction method to synthesize ordered Fe-Pt alloy nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 560-567. |
| [4] | Zheng Chen, Xiao Sun, Zongling Ding, Yongqing Ma. Manganese ferrite nanoparticles with different concentrations: Preparation and magnetism [J]. J. Mater. Sci. Technol., 2018, 34(5): 842-847. |
| [5] | Tingzhi Liu, Yangyang Li, Huan Ke, Yuhai Qian, Shuwang Duo, Yanli Hong, Xinyuan Sun. Chemical Bath Co-deposited ZnS Film Prepared from Different Zinc Salts: ZnSO4-Zn(CH3COO)2, Zn(NO3)2-Zn(CH3COO)2, or ZnSO4-Zn(NO3)2 [J]. J. Mater. Sci. Technol., 2016, 32(3): 207-217. |
| [6] | Zhijun Jia, Jun Wang, Yi Wang, Bingyang Li, Baoguo Wang, Tao Qi, Xin Wang. Interfacial Synthesis of δ-MnO2 Nano-sheets with a Large Surface Area and Their Application in Electrochemical Capacitors [J]. J. Mater. Sci. Technol., 2016, 32(2): 147-152. |
| [7] | Xing Zhou, Yan Li, Changqing Fang, Shujuan Li, Youliang Cheng, Wanqing Lei, Xiangjie Meng. Recent Advances in Synthesis of Waterborne Polyurethane and Their Application in Water-based Ink: A Review [J]. J. Mater. Sci. Technol., 2015, 31(7): 708-722. |
| [8] | Marivone Gusatti, Daniel A.R. Souza, Nivaldo C. Kuhnen, Humberto G. Riella. Growth of Variable Aspect Ratio ZnO Nanorods by Solochemical Processing [J]. J. Mater. Sci. Technol., 2015, 31(1): 10-15. |
| [9] | Taghi Dallali Isfahani, Jafar Javadpour, Alireza Khavandi, Massoud Goodarzi,Hamid Reza Rezaie. Nanocrystalline Growth Activation Energy of Zirconia Polymorphs Synthesized by Mechanochemical Technique [J]. J. Mater. Sci. Technol., 2014, 30(4): 387-393. |
| [10] | Akshay Kumar, K. Singh, O.P. Pandey. One Step Synthesis and Growth Mechanism of Carbon Nanotubes [J]. J. Mater. Sci. Technol., 2014, 30(2): 112-116. |
| [11] | Wei Jia, Suihu Dang, Hairui Liu, Zhuxia Zhang, Tianbao Li, Xuguang Liu, Bingshe Xu. Submicrometer-scale ZnO Composite Aggregate Arrays Photoanodes for Dye-sensitized Solar Cells [J]. J. Mater. Sci. Technol., 2013, 29(5): 415-418. |
| [12] | Jie Zhang, Yongyi Gao, Junjie Xiao, Changfu Xu, Yunxin Liu, Qibin Yang. Relationship between Microstructure Evolution and the Luminescent Properties of Eu3+-doped Yttrium Aluminum Garnet and Y2O3 Nano-powders [J]. J. Mater. Sci. Technol., 2013, 29(3): 225-230. |
| [13] | Xifeng Lu, Longwei Yin. Porous Indium Oxide Nanorods: Synthesis, Characterization and Gas Sensing Properties [J]. J Mater Sci Technol, 2011, 27(8): 680-684. |
| [14] | X. He, Z.H. Wang, D.Y. Geng, Z.D. Zhang. Structure and Magnetic Properties of S-doped Mn3O4/S Composited Nanoparticles and Mn3O4 Nanoparticles [J]. J Mater Sci Technol, 2011, 27(6): 503-506. |
| [15] | Lakhwant Singh, Vibha Chopra. Effect of Preparation Conditions on the Crystallinity of Chemically Synthesized BCNO Nanophosphor [J]. J Mater Sci Technol, 2011, 27(11): 967-972. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
