J. Mater. Sci. Technol. ›› 2020, Vol. 56: 45-68.DOI: 10.1016/j.jmst.2020.04.023
• Invited Review • Previous Articles Next Articles
Xintong Liua,b, Shaonan Gua,*(), Yanjun Zhaob, Guowei Zhoua,*(
), Wenjun Lib
Received:
2019-12-25
Revised:
2020-02-22
Accepted:
2020-02-22
Published:
2020-11-01
Online:
2020-11-20
Contact:
Shaonan Gu,Guowei Zhou
Xintong Liu, Shaonan Gu, Yanjun Zhao, Guowei Zhou, Wenjun Li. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review[J]. J. Mater. Sci. Technol., 2020, 56: 45-68.
Sample | Band gap (eV) | Absorbance range | Refs. |
---|---|---|---|
TiO2 | 3.0-3.2 | UV | [ |
ZnO | 3.6-3.8 | UV | [ |
BiVO4 | 2.4-2.5 | UV-vis | [ |
Bi2MoO6 | 2.3-2.7 | UV-vis | [ |
Bi2WO6 | 2.6-2.7 | UV-vis | [ |
CdS | 2.2-2.7 | UV-vis | [ |
Table 1 The band gap and absorbance range of attractive photocatalysts.
Sample | Band gap (eV) | Absorbance range | Refs. |
---|---|---|---|
TiO2 | 3.0-3.2 | UV | [ |
ZnO | 3.6-3.8 | UV | [ |
BiVO4 | 2.4-2.5 | UV-vis | [ |
Bi2MoO6 | 2.3-2.7 | UV-vis | [ |
Bi2WO6 | 2.6-2.7 | UV-vis | [ |
CdS | 2.2-2.7 | UV-vis | [ |
Fig. 2. (A) Preparation of 1D SiO2-Bi2MoO6 microbelts. SEM (B, C) and TEM (D) images of SiO2-Bi2MoO6. (E) Schematic of the preparation of SiO2-Bi2MoO6 microbelts. (F) Schematic of MB decomposition over the SiO2-Bi2MoO6 photocatalysts under visible light illumination. Reprinted with permission from Ref. [132].
Fig. 3. The magnetism, photocatalytic performance, and structure diagram of 1D-1D Bi2MoO6/ZnFe2O4 photocatalyst. Reprinted with permission from Ref. [145].
Fig. 4. (A) Fabrication of the BP/MBWO heterojunction. TEM images of BP nanoplates (B), MBWO nanoplates (C), 12 % BP/MBWO composite sample (D). (E) Performance of the photocatalysts for NO removal and photocatalytic H2 generation: without co-catalyst (F) and with 3 wt. % Pt as co-catalyst (G). (H) catalytic mechanism of NO removal and water splitting by BP/MBWO composite sample under visible-light illumination. Reprinted with permission from Ref. [152].
Fig. 5. Schematic of the synthesis of 3D-BWO/GH composite (A); FE-SEM of (B) BWO; (C) GH; (D) 78.31 % BWO/GH; light harvesting of GH, BWO, and BWO/GH heterojunctions (E); (F) Synergetic decomposition of MB by BWO and BWO/GH composites under visible-light irradiation in. The schematic of the synergy of pollutant adsorption enhancement and photocatalytic decomposition by BWO/GH heterojunction (G). Reprinted with permission from Ref. [174].
Fig. 6. (A) The molecular model of BMO, (B) 5 × 1 × 4 supercell of BMO, and (C) 2 Lu-ions-doped 5 × 1 × 4 molecular model; SEM images of pristine BMO (D), 4.0 mol % Lu-BMO (E); (F) Probable transformation process from large thin sheets to rods; (G) ESR spectra of (a) pure BMO and (b) 2.5 mol % Lu-BMO in dark and under visible light; (H) Schematic of the photocatalytic mechanism for decomposition of RhB by Lu-BMO. Reprinted with permission from Ref. [185].
Fig. 8. (A) The light harvesting of pristine BMO, Tb-BMO, Eu-BMO, Tb/Eu-BMO, Dy-BMO, Sm-BMO, Dy/Sm-BMO, Er-BMO, Nd-BMO, and Er/Nd-BMO samples. The illustration shows the bandgap of the as-prepared samples; (B) Photocatalytic decomposition of phenol (40 mL, 15 mg L-1) over 0.04 g of samples under 5 h of visible-light illumination; (C) Schematic of the possible mechanism for the boosted catalytic activity in Ln1/Ln2-BMO; (D) Schematic of the complementary distribution of 4f orbital electrons in the Tb/Eu redox couple (a), Dy/Sm redox couple (b), and Er/Nd redox couple (c). Reprinted with permission from Ref. [202].
Fig. 9. (A) TEM image of Sm-N-Bi2WO6; (B) HR-TEM image of Sm-N-Bi2WO6; (C) Schematic of the crystal structure of Sm-N-Bi2WO6; (D) The photocatalytic mechanism of Sm-N-Bi2WO6. Reprinted with permission from Ref. [205].
Fig. 10. (A-F) SEM images of dual components photo-deposited on the surface of BiVO4. (G) The scheme of selective deposition of reduction and oxidation cocatalysts on {010} and {110} facets of BiVO4 based on the charge separation between different facets. Reprinted with permission from Refs. [206] and [207].
Fig. 11. (A) Synthesis technique of BL-BiOI; (B) schematic of Homojunction growth procedure; (C) the growth procedure for SL-BiOI and BL-BiOI nanoplates; (D) The band structure of BL-BiOI; (E) light harvesting of BVO membrane. PEC efficiency of BVO and OEC/BVO catalysts in 0.1 m K2B4O7?4H2O (pH = 9.6) with Na2SO3 (short dash line) and without Na2SO3 (solid line): (F) J-V plots under AM 1.5 G irradiation (100 mW cm-2). Reprinted with permission from Ref. [212].
Fig. 13. (A) Morphology of the as-prepared TiO2-BiVO4; (B) Photoelectrocatalytic degradation efficiency of as-prepared samples; (C) Photocatalytic mechanism; (D, E) Degradation process of PC and SPEC. Reprinted with permission from Ref. [221].
Fig. 14. (A) Synthesis process of the NGQD-modulated Z-scheme g-C3N4/Bi2WO6 composites. (B, C) Photocatalytic decomposition of TC with the as-prepared samples. (D) Schematic of the possible photocatalytic mechanism for ternary system. Reprinted with permission from Ref. [222].
Fig. 15. The Schematic illustration of the AgI/I-BiOAc (A) and WO3/TiO2/rGO (B) S-scheme heterojunctions. Reprinted with permission from Refs. [224] and [225].
Fig. 16. (A) Prepare procedure of pristine BiVO4, FeF2/BiVO4 electrodes. (B, C) Time course of produced H2 at 1.23 V vs. RHE in 0.5 M Na2SO4 solution. (D, E) The possible mechanism of FeF2-BiVO4 photocatalysts under visible light illumination. Reprinted with permission from Ref. [227].
Fig. 17. Catalytic performance (A) and kinetic fit for the decomposition of RhB (B) of CN, BWO, CN/BWO composites. (C) Possible mechanism for the photo-excited electrons transfer route of CN/BWO composites. (D) Schematic preparation of SnS dispersed on Bi2WO6 via a bath sonication method. (E) The photocatalytic mechanism of SnS-Bi2WO6. Reprinted with permission from Refs. [187] and [229].
Sample | Method | Performance enhancement | Application | Refs. |
---|---|---|---|---|
BiVO4/g-C3N4 | Mixed-calcination method | Efficient separation of photoinduced charge carriers | Degradation | [ |
3DOM BiVO4/TiO2 | Hydrothermal method | Enlarged absorption range and efficient transfer of charges | Degradation | [ |
CdS-Au-BiVO4 | Photo-reduction and deposition-precipitation methods | Decreased recombination rate of carriers and the additional radicals | Degradation | [ |
Pd-decorated m-BiVO4/BiOBr | Scale up approach | Efficient transfer of carriers | Degradation | [ |
Au/TiO2/BiVO4 | Ion exchange process | New proper-energy platform to accept the electrons | CO2 reduction | [ |
WO3/BiVO4 | Electroplating process | The high surface area improved the separation of charges | Water splitting | [ |
SiC/BiVO4 | crystal engineering method | Efficient separation of charge carriers | Water splitting | [ |
Bi4V2O11 | one-pot solvothermal method | Novel crystal structure | Oxygen evolution | [ |
g-C3N4@Ag/BiVO4 | Photodeposited and hydrothermal method | Z-scheme system facilitate the separation of charge carriers | Water splitting and NO decomposition | [ |
BiVO4/CDs/CdS | Solid-state method | Z-scheme structure extended the lifetime of electrons and holes | Oxygen evolution | [ |
BiVO4/Ag/rGO | One-pot in situ hydrothermal method | Combined effects of strong visible light absorption, improved charge separation-transportation and excellent surface properties. | Water splitting and MB degradation | [ |
Bi/BiVO4/V2O5 | Annealing method | The best yield achieved 2413 μmol g-1 h-1 | Water splitting | [ |
Bi2MoO6/ZnSnO3 | Combined solvothermal and annealing steps | Degradation efficiency of approximate 95 %, which was up to 1.27 times and 7.31 times higher in comparison with pure Bi2MoO6 and ZnSnO3 | MB degradation | [ |
Au-Bi2MoO6/TiO2 | facile solvothermal method combined with mussel-inspired functional modification of electrochemical polymerization of dopamine | SPR facilitated the separation of charge carriers | Degradation | [ |
Bi-Bi2MoO6/CdS-DETA | In situ solvothermal method | Z-scheme and SPR enhanced the separation of carriers | H2 generation | [ |
Bi2MoO6 Nanosheet/TiO2 | Hydrothermal method | The best oxygen production rate achieved 0.668 mmol h-1 g-1. | Oxygen production | [ |
Fe3O4/Ag/Bi2MoO6 | Hydrothermal-photoreduction strategy | LSPR promoted the catalytic performance | high-toxic pollutants removal | [ |
Ce-Bi2MoO6 | Hydrothermal method | Ce3+/Ce4+ and Mo4+/Mo6+ redox couples promoted the separation rate of charge carriers | Degradation | [ |
Bi-Bi2MoO6 | In situ deposition method | The enhanced radical production | NO decomposition | [ |
Ag/AgCl-Bi2MoO6 | wet-chemical process | The separation efficiency of photo-generated charge carriers was promoted | Degradation | [ |
g-C3N4/Bi2MoO6 | Hydrothermal method | Efficient separation of photoinduced electrons and holes. | Degradation | [ |
CdS/Bi2MoO6 | two-step hydrothermal process | The degradation was about 25.3 and 3.7 times higher than that of individual CdS and Bi2MoO6 | MB and RhB degradation | [ |
rGO/Bi2MoO6 | Facile ultraviolet light reduction method | rGO as an electron collector | Water splitting and degradation | [ |
Ag-rGO-Bi2MoO6 | Solvothermal chemical reduction processes | The resistance to electron transfer in Ag-rGO-Bi2MoO6was decreased to 1/16 that of pure Bi2MoO6 | Water splitting and degradation | [ |
Pt-Bi2MoO6 | Green synthesis of fine chemicals | 2D geometry affording abundant catalytically active sites | Photocatalytic oxidation of alcohol | [ |
Ag2WO4/Ag/Bi2MoO6 | In situ doping, facile hydrothermal and photochemical process | Promoted photoelectrons transfer | Degradation | [ |
BiPO4/Bi2WO6 | Ultrasonic-calcination method | The degradation of MB is 0.0305 min-1, which is about 25.4 and 3.2 times of pure BiPO4 and Bi2WO6 | Degradation of MB | [ |
MXene/Bi2WO6 | In situ growth method | Hybrids exhibit a short charge transport distance and a large interface contact area | CO2 reduction | [ |
CQDs/Bi2WO6 | Facile decoration | Effective charge separation | Removal of gaseous volatile organic compounds (VOCs) | [ |
Bi/Bi2WO6 | Solvothermal method | strong visible light absorption and high migration efficiency of the electron-holes | Degradation | [ |
g-C3N4/RGO/Bi2WO6 | Hydrothermal method | Efficient visible-light utilization efficiency | Dechlorination of TCP | [ |
TiO2-Bi2WO6 | Facile two-step hydrothermal method | The light absorption range was extended to the visible light region | Disinfection | [ |
Bi2Fe4O9/Bi2WO6 | Facile hydrothermal route | The effective photoinduced carrier separation, the broadened photoabsorption range, high oxidation capacity of hole, and the high reduction power of electron | Degradation | [ |
Bi2S3/Bi2WO6 | Robust single-step hydrothermal synthesis method | The composite possesses a wide photoabsorption until 800 nm | Reduction of Cr(VI) | [ |
Ag@AgCl QDs Bi2WO6 | Facile oil-in-water self-assembly method | High efficiency in charge separation | Degradation of RhB and phenol | [ |
Ag3VO4/Bi2WO6 | In situ anchoring | Degradation rate constant of up to 0.0392 min-1, a 6.7 or 1.7 times more enhancement compared with the pure Bi2WO6 or Ag3VO4. | Degradation | [ |
Bi2WO6/BiOI | Chemical etching method | The p-n heterojunction, accelerating the separation of photogenerated charge carriers | Degradation of MB | [ |
Bi2WO6/BiPO4 | Ultrasonic chemical method | Decoloration rate reached approximately 1.88 times and 4.29 times higher than those of Bi2WO6 and BiPO4 | Degradation of MB | [ |
Ag/WO3/Bi2WO6 | Ion insertion and condensation process | The conversion efficiency of heterojunction is 2.5 and 1.9 times higher than those of the pristine Bi2WO6 and WO3/Bi2WO6 | Abatement of chlorinated-VOCs | [ |
Table 2 Applications and synthesis method of BiaAOb-based materials.
Sample | Method | Performance enhancement | Application | Refs. |
---|---|---|---|---|
BiVO4/g-C3N4 | Mixed-calcination method | Efficient separation of photoinduced charge carriers | Degradation | [ |
3DOM BiVO4/TiO2 | Hydrothermal method | Enlarged absorption range and efficient transfer of charges | Degradation | [ |
CdS-Au-BiVO4 | Photo-reduction and deposition-precipitation methods | Decreased recombination rate of carriers and the additional radicals | Degradation | [ |
Pd-decorated m-BiVO4/BiOBr | Scale up approach | Efficient transfer of carriers | Degradation | [ |
Au/TiO2/BiVO4 | Ion exchange process | New proper-energy platform to accept the electrons | CO2 reduction | [ |
WO3/BiVO4 | Electroplating process | The high surface area improved the separation of charges | Water splitting | [ |
SiC/BiVO4 | crystal engineering method | Efficient separation of charge carriers | Water splitting | [ |
Bi4V2O11 | one-pot solvothermal method | Novel crystal structure | Oxygen evolution | [ |
g-C3N4@Ag/BiVO4 | Photodeposited and hydrothermal method | Z-scheme system facilitate the separation of charge carriers | Water splitting and NO decomposition | [ |
BiVO4/CDs/CdS | Solid-state method | Z-scheme structure extended the lifetime of electrons and holes | Oxygen evolution | [ |
BiVO4/Ag/rGO | One-pot in situ hydrothermal method | Combined effects of strong visible light absorption, improved charge separation-transportation and excellent surface properties. | Water splitting and MB degradation | [ |
Bi/BiVO4/V2O5 | Annealing method | The best yield achieved 2413 μmol g-1 h-1 | Water splitting | [ |
Bi2MoO6/ZnSnO3 | Combined solvothermal and annealing steps | Degradation efficiency of approximate 95 %, which was up to 1.27 times and 7.31 times higher in comparison with pure Bi2MoO6 and ZnSnO3 | MB degradation | [ |
Au-Bi2MoO6/TiO2 | facile solvothermal method combined with mussel-inspired functional modification of electrochemical polymerization of dopamine | SPR facilitated the separation of charge carriers | Degradation | [ |
Bi-Bi2MoO6/CdS-DETA | In situ solvothermal method | Z-scheme and SPR enhanced the separation of carriers | H2 generation | [ |
Bi2MoO6 Nanosheet/TiO2 | Hydrothermal method | The best oxygen production rate achieved 0.668 mmol h-1 g-1. | Oxygen production | [ |
Fe3O4/Ag/Bi2MoO6 | Hydrothermal-photoreduction strategy | LSPR promoted the catalytic performance | high-toxic pollutants removal | [ |
Ce-Bi2MoO6 | Hydrothermal method | Ce3+/Ce4+ and Mo4+/Mo6+ redox couples promoted the separation rate of charge carriers | Degradation | [ |
Bi-Bi2MoO6 | In situ deposition method | The enhanced radical production | NO decomposition | [ |
Ag/AgCl-Bi2MoO6 | wet-chemical process | The separation efficiency of photo-generated charge carriers was promoted | Degradation | [ |
g-C3N4/Bi2MoO6 | Hydrothermal method | Efficient separation of photoinduced electrons and holes. | Degradation | [ |
CdS/Bi2MoO6 | two-step hydrothermal process | The degradation was about 25.3 and 3.7 times higher than that of individual CdS and Bi2MoO6 | MB and RhB degradation | [ |
rGO/Bi2MoO6 | Facile ultraviolet light reduction method | rGO as an electron collector | Water splitting and degradation | [ |
Ag-rGO-Bi2MoO6 | Solvothermal chemical reduction processes | The resistance to electron transfer in Ag-rGO-Bi2MoO6was decreased to 1/16 that of pure Bi2MoO6 | Water splitting and degradation | [ |
Pt-Bi2MoO6 | Green synthesis of fine chemicals | 2D geometry affording abundant catalytically active sites | Photocatalytic oxidation of alcohol | [ |
Ag2WO4/Ag/Bi2MoO6 | In situ doping, facile hydrothermal and photochemical process | Promoted photoelectrons transfer | Degradation | [ |
BiPO4/Bi2WO6 | Ultrasonic-calcination method | The degradation of MB is 0.0305 min-1, which is about 25.4 and 3.2 times of pure BiPO4 and Bi2WO6 | Degradation of MB | [ |
MXene/Bi2WO6 | In situ growth method | Hybrids exhibit a short charge transport distance and a large interface contact area | CO2 reduction | [ |
CQDs/Bi2WO6 | Facile decoration | Effective charge separation | Removal of gaseous volatile organic compounds (VOCs) | [ |
Bi/Bi2WO6 | Solvothermal method | strong visible light absorption and high migration efficiency of the electron-holes | Degradation | [ |
g-C3N4/RGO/Bi2WO6 | Hydrothermal method | Efficient visible-light utilization efficiency | Dechlorination of TCP | [ |
TiO2-Bi2WO6 | Facile two-step hydrothermal method | The light absorption range was extended to the visible light region | Disinfection | [ |
Bi2Fe4O9/Bi2WO6 | Facile hydrothermal route | The effective photoinduced carrier separation, the broadened photoabsorption range, high oxidation capacity of hole, and the high reduction power of electron | Degradation | [ |
Bi2S3/Bi2WO6 | Robust single-step hydrothermal synthesis method | The composite possesses a wide photoabsorption until 800 nm | Reduction of Cr(VI) | [ |
Ag@AgCl QDs Bi2WO6 | Facile oil-in-water self-assembly method | High efficiency in charge separation | Degradation of RhB and phenol | [ |
Ag3VO4/Bi2WO6 | In situ anchoring | Degradation rate constant of up to 0.0392 min-1, a 6.7 or 1.7 times more enhancement compared with the pure Bi2WO6 or Ag3VO4. | Degradation | [ |
Bi2WO6/BiOI | Chemical etching method | The p-n heterojunction, accelerating the separation of photogenerated charge carriers | Degradation of MB | [ |
Bi2WO6/BiPO4 | Ultrasonic chemical method | Decoloration rate reached approximately 1.88 times and 4.29 times higher than those of Bi2WO6 and BiPO4 | Degradation of MB | [ |
Ag/WO3/Bi2WO6 | Ion insertion and condensation process | The conversion efficiency of heterojunction is 2.5 and 1.9 times higher than those of the pristine Bi2WO6 and WO3/Bi2WO6 | Abatement of chlorinated-VOCs | [ |
[1] | Z. Zhu, C.T. Kao, B.H. Tang, W.C. Chang, R.J. Wu, Ceram. Int. 42(2016) 6749-6754. |
[2] | F. Lin, B. Shao, Z. Li, J. Zhang, H. Wang, S. Zhang, M. Haruta, J. Huang, Appl. Catal. B-Environ. 218(2017) 480-487. |
[3] | S.H. Li, S.Q. Liu, J.C. Colmenares, Y.J. Xu, Green Chem. 18(2016) 594-607. |
[4] | M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Adv. Sci. 4(2017) 1600152. |
[5] | R.K. Lukman, P. Glavič, A. Carpenter, P. Virtič, J. Clean. Prod. 138(2016) 139-147. |
[6] | Q. Yan, G.F. Huang, D.F. Li, M. Zhang, A.L. Pan, W.Q. Huang, J. Mater. Sci. Technol. 34(2018) 2515-2520. |
[7] | F. Xu, K. Meng, B. Zhu, H. Liu, J. Xu, J. Yu, Adv. Funct. Mater. 29(2019), 1904256. |
[8] |
Q. Xiang, F. Cheng, D. Lang, ChemSusChem 9 (2016) 996-1002.
URL PMID |
[9] | J.D. Li, W. Fang, C.L. Yu, W.Q. Zhou, L.H. Zhu, Y. Xie, Appl. Surf. Sci. 358(2015) 46-56. |
[10] | A. Li, X. Chang, Z. Huang, C. Li, Y. Wei, L. Zhang, T. Wang, J. Gong, Angew. Chem. Int. Edit. 55(2016) 13734-13738. |
[11] |
X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M.T.F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P.M. Ajayan, Adv. Energy Mater. 7(2017), 1700025.
DOI URL |
[12] | Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, Adv. Funct. Mater. 27(2017), 1702513. |
[13] | Y.L. Tang, N.N. Rong, F.L. Liu, M.S. Chu, H.M. Dong, Y.H. Zhang, P. Xiao, Appl. Surf. Sci. 361(2016) 133-140. |
[14] | Y. Xia, B. Cheng, J. Fan, J. Yu, G. Liu, Small 15(2019), 1902459. |
[15] | A. Bellucci, P. Calvani, M. Girolami, S. Orlando, R. Polini, D.M. Trucchi, Appl. Surf. Sci. 380(2016) 8-11. |
[16] |
Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Nat. Mater. 15(2016) 611.
URL PMID |
[17] | J. Xiao, W. Yang, S. Gao, C. Sun, Q. Li, J. Mater, Sci. Technol. 34(2018) 2331-2336. |
[18] | M. Baradaran, F. Ghodsi, C. Bittencourt, E. Llobet, J. Alloys Compd. 788(2019) 289-301. |
[19] |
X. Kong, C. Zeng, X. Wang, J. Huang, C. Li, J. Fei, J. Li, Q. Feng, Sci. Rep. 6(2016) 29049.
URL PMID |
[20] | X. Kong, Q. Lu, J. Huang, L. Li, J. Zhang, X. Wang, J. Li, Y. Wang, Q. Feng, J. Alloys Compd. 746(2018) 68-76. |
[21] | C. Li, W. Yang, Q. Li, J. Mater, Sci. Technol. 34(2018) 969-975. |
[22] | A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 31(2019), 1807660. |
[23] | R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Nanoscale Horiz. 3(2018) 464-504. |
[24] | F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B-Environ. 230(2018) 194-202. |
[25] | I. Anusca, S. Balčiunas, P. Gemeiner, Š. Svirskas, M. Sanlialp, G. Lackner, C. Fettkenhauer, J. Belovickis, V. Samulionis, M. Ivanov, Adv. Energy Mater. 7(2017), 1700600. |
[26] |
K. Fu, C.T. Nelson, M.C. Scott, A. Minor, N. Mathews, L.H. Wong, Nanoscale 8(2016) 4181-4193.
DOI URL PMID |
[27] | J. Xia, M. Ji, J. Di, B. Wang, S. Yin, M. He, Q. Zhang, H. Li, J. Alloys Compd. 695(2017) 922-930. |
[28] | Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou, W. Ho, Appl. Catal. B-Environ. 255(2019), 117770. |
[29] | J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391(2017) 72-123. |
[30] | J. Qin, H. Zeng, Appl. Catal. B-Environ. 209(2017) 161-173. |
[31] | T. Di, B. Cheng, W. Ho, J. Yu, H. Tang, Appl. Surf. Sci. 470(2019) 196-204. |
[32] | Q. Xiang, D. Lang, T. Shen, F. Liu, Appl. Catal. B-Environ. 162(2015) 196-203. |
[33] | Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, Z. Han, Phys. Chem. Chem. Phys. 17(2015) 1870-1876. |
[34] | Y. Zhu, Y. Wang, Q. Ling, Y. Zhu, Appl. Catal. B-Environ. 200(2017) 222-229. |
[35] | S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28(2018), 1800136. |
[36] | D. Ma, J. Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Chem. Eng. J. 290(2016) 136-146. |
[37] | Y. Huang, S. Kang, Y. Yang, H. Qin, Z. Ni, S. Yang, X. Li, Appl. Catal. B-Environ. 196(2016) 89-99. |
[38] | A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, Appl. Catal. A-Gen. 555(2018) 47-74. |
[39] |
N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Dalton Trans. 44(2015) 4297-4307.
URL PMID |
[40] | F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, Appl. Catal. B-Environ. 201(2017) 77-83. |
[41] | F. Chen, C. Niu, Q. Yang, X. Li, G. Zeng, Ceram. Int. 42(2016) 2515-2525. |
[42] | J. Di, J. Xia, M. Ji, H. Li, H. Xu, H. Li, R. Chen, Nanoscale 7 (2015) 11433-11443. |
[43] | X. Meng, Z. Zhang, Appl. Surf. Sci. 392(2017) 169-180. |
[44] | Y. Feng, X. Yan, C. Liu, Y. Hong, L. Zhu, M. Zhou, W. Shi, Appl. Surf. Sci. 353(2015) 87-94. |
[45] | Y. Sun, H. Wang, Q. Xing, W. Cui, J. Li, S. Wu, L. Sun, Chin. J. Catal. 40(2019) 647-655. |
[46] | J. Wang, L. Tang, G. Zeng, Y. Liu, Y. Zhou, Y. Deng, J. Wang, B. Peng, ACS Sustain. Chem. Eng. 5(2016) 1062-1072. |
[47] | Z. Zhao, W. Zhang, Y. Sun, J. Yu, Y. Zhang, H. Wang, F. Dong, Z. Wu, J. Phys. Chem. C 120 (2016) 11889-11898. |
[48] | K. Ji, H. Dai, J. Deng, H. Zang, H. Arandiyan, S. Xie, H. Yang, Appl. Catal.B-Environ. 168(2015) 274-282. |
[49] | X. Huang, J. Zhao, X. Xiong, S. Liu, Y. Xu, Catal. Sci. Technol. 9(2019) 4413-4421. |
[50] | M. Ou, S. Wan, Q. Zhong, S. Zhang, Y. Song, L. Guo, W. Cai, Y. Xu, Appl. Catal. B-Environ. 221(2018) 97-107. |
[51] | Y. Lv, W. Yao, R. Zong, Y. Zhu, Sci. Rep. 6(2016) 19347. |
[52] |
L. Xiao, R. Lin, J. Wang, C. Cui, J. Wang, Z. Li, J. Colloid Interface Sci. 523(2018) 151-158.
URL PMID |
[53] | P. Zhu, Y. Chen, M. Duan, Z. Ren, M. Hu, Catal. Sci. Technol. 8(2018) 3818-3832. |
[54] | Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Chem. Eng. J. 326(2017) 411-418. |
[55] | J. Li, X. Liu, X. Piao, Z. Sun, L. Pan, RSC Adv. 5(2015) 16592-16597. |
[56] | X. Zhang, M. Zhang, K. Cao, CrystEngComm 21 (2019) 6208-6218. |
[57] | L.N. Song, L. Chen, J. He, P. Chen, H.K. Zeng, C.T. Au, S.F. Yin, Chem. Commun. 53(2017) 6480-6483. |
[58] | S. Dong, X. Ding, T. Guo, X. Yue, X. Han, J. Sun, Chem. Eng. J. 316(2017) 778-789. |
[59] | C. Wu, J. Zhong, J. Xie, D. Wang, Y. Shi, Q. Chen, H. Yan, J. Zhu, Appl. Surf. Sci. 484(2019) 112-123. |
[60] | Z. Jiang, Y. Liu, T. Jing, B. Huang, X. Zhang, X. Qin, Y. Dai, M.H. Whangbo, J. Phys. Chem. C120 (2016) 2058-2063. |
[61] | G. Lu, Z. Lun, H. Liang, H. Wang, Z. Li, W. Ma, J. Alloys Compd. 772(2019) 122-131. |
[62] | A. Rauf, M.S.A. Sher Shah, G.H. Choi, U.B. Humayoun, D.H. Yoon, J.W. Bae, J. Park, W.J. Kim, P.J. Yoo, ACS Sustain. Chem. Eng. 3(2015) 2847-2855. |
[63] | X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Adv. Funct. Mater. 26(2016) 4067-4077. |
[64] | Q.Y. Tang, R. Huo, L.Y. Ou, X.L. Luo, Y.R. Lv, Y.H. Xu, Chin. J. Catal. 40(2019) 580-589. |
[65] | K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 38(2017) 1936-1955. |
[66] | P. Madhusudan, J. Ran, J. Zhang, J. Yu, G. Liu, Appl. Catal. B-Environ. 110(2011) 286-295. |
[67] |
J. Low, J. Yu, Q. Li, B. Cheng, Phys. Chem. Chem. Phys. 16(2014) 1111-1120.
URL PMID |
[68] | J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 31(2019), 1802981. |
[69] | Y. Ma, Y. Jia, Z. Jiao, M. Yang, Y. Qi, Y. Bi, Chem. Commun. 51(2015) 6655-6658. |
[70] | S. Yu, Y. Zhang, M. Li, X. Du, H. Huang, Appl. Surf. Sci. 391(2017) 491-498. |
[71] | K. Jing, J. Xiong, N. Qin, Y. Song, L. Li, Y. Yu, S. Liang, L. Wu, Chem. Commun. 53(2017) 8604-8607. |
[72] | Y. Hao, X. Dong, S. Zhai, X. Wang, H. Ma, X. Zhang, Chem. Commun. 52(2016) 6525-6528. |
[73] | Q. Xie, W. He, S. Liu, C. Li, J. Zhang, P.K. Wong, Chin. J. Catal. 41(2020) 140-153. |
[74] | Y. Xiao, J.Y. Hwang, Y.K. Sun, J. Mater. Chem. A 4 (2016) 10379-10393. |
[75] | H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Nat. Rev. Mater. 2(2017) 17023. |
[76] | X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, Z.L. Wang, Adv. Energy Mater. 6(2016), 1601048. |
[77] | H. Wei, D. Cui, J. Ma, L. Chu, X. Zhao, H. Song, H. Liu, T. Liu, N. Wang, Z. Guo, J. Mater. Chem. A5 (2017) 1873-1894. |
[78] | Y. Xiao, X. Guo, J. Liu, L. Liu, F. Zhang, C. Li, Chin. J. Catal. 40(2019) 1339-1344. |
[79] | X. Zhang, L. Hou, A. Ciesielski, P. Samori, Adv. Energy Mater. 6(2016), 1600671. |
[80] |
T. Zhao, S. Zhang, Y. Guo, Q. Wang, Nanoscale 8 (2016) 233-242.
URL PMID |
[81] | R. Souleymen, Z. Wang, C. Qiao, M. Naveed, C. Cao, J. Mater. Chem. A6 (2018) 7592-7607. |
[82] | S. Liu, M. Zhao, Z. He, Y. Zhong, H. Ding, D. Chen, Chin. J. Catal. 40(2019) 446-457. |
[83] | Y. Wang, Y. Zeng, X. Chen, Q. Wang, L. Guo, S. Zhang, Q. Zhong, Green Chem. 20(2018) 3014-3023. |
[84] | J. Cai, J. Huang, Y. Lai, J. Mater. Chem. A5 (2017) 16412-16421. |
[85] | Z. Jiang, X. Liang, H. Zheng, Y. Liu, Z. Wang, P. Wang, X. Zhang, X. Qin, Y. Dai, M.H. Whangbo, Appl. Catal. B-Environ. 219(2017) 209-215. |
[86] |
C. Yan, H. Zhao, D.F. Perepichka, F. Rosei, Small 12 (2016) 3888-3907.
URL PMID |
[87] | Y. Zheng, G. Chen, Y. Yu, Y. Zhou, F. He, Appl. Surf. Sci. 362(2016) 182-190. |
[88] | S. Le, T. Jiang, Y. Li, Q. Zhao, Y. Li, W. Fang, M. Gong, Appl. Catal. B-Environ. 200(2017) 601-610. |
[89] | O.A. Yildirim, H. Arslan, S. Sönmezoğlu, Appl. Surf. Sci. 390(2016) 111-121. |
[90] |
B. Gao, T. Wang, X. Fan, H. Gong, H. Guo, W. Xia, Y. Feng, X. Huang, J. He, Inorg. Chem. Front. 4(2017) 898-906.
DOI URL |
[91] | D. Lu, K.K. Kondamareddy, H. Fan, B. Gao, J. Wang, J. Wang, H. Hao, Sep. Purif. Technol. 210(2019) 775-785. |
[92] | C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 31(2019), 1902868. |
[93] | Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, Carbon 99(2016) 111-117. |
[94] | Y. Sang, H. Liu, A. Umar, ChemCatChem 7 (2015) 559-573. |
[95] |
T.D. Nguyen Phan, S. Luo, D. Vovchok, J. Llorca, S. Sallis, S. Kattel, W. Xu, L.F. Piper, D.E. Polyansky, S.D. Senanayake, Phys. Chem. Chem. Phys. 18(2016) 15972-15979.
URL PMID |
[96] | C. Tsai, K. Chan, J.K. Nørskov, F. Abild-Pedersen, Catal. Sci. Technol. 5(2015) 246-253. |
[97] | D. Ma, T. Li, Q. Wang, G. Yang, C. He, B. Ma, Z. Lu, Carbon 95 (2015) 756-765. |
[98] | J. Lee, J. Lee, J. Park, S.E. Lee, E.G. Lee, C. Im, K.H. Lim, Y.S. Kim, ACS Appl. Mater. Intererfaces 11 (2019) 4103-4110. |
[99] | L. Gan, M. Liao, H. Li, Y. Ma, T. Zhai, J. Mater. Chem. A3 (2015) 8300-8306. |
[100] | H. Li, T. Hu, R. Zhang, J. Liu, W. Hou, Appl. Catal. B-Environ. 188(2016) 313-323. |
[101] | M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Appl. Catal. B-Environ. 164(2015) 77-81. |
[102] |
G. Tan, F. Shi, S. Hao, H. Chi, T.P. Bailey, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 137(2015) 11507-11516.
DOI URL PMID |
[103] | Z. Liu, J. Zhang, W. Yan, ACS Sustain. Chem. Eng. 6(2018) 3565-3574. |
[104] | Q. Song, J. Li, L. Wang, Y. Qin, L. Pang, H. Liu, J. Catal. 370(2019) 176-185. |
[105] | J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, Small Methods 1 2017), 1700080. |
[106] | S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S.S.K. Ma, F. Zhang, K. Domen, C. Li, Angew. Chem. Int. Edit. 54(2015) 8498-8501. |
[107] | M. Moustafa, A. Paulheim, M. Mohamed, C. Janowitz, R. Manzke, Appl. Surf. Sci. 366(2016) 397-403. |
[108] |
Z. Xiong, Z. Wang, M. Muthu, Y. Zhang, J. Hazard. Mater. 373(2019) 565-571.
URL PMID |
[109] | S.Y. Li, Z.L. Liu, G.X. Xiang, B.H. Ma, X.D. Meng, Y.L. He, Ceram. Int. 45(2019) 767-776. |
[110] | R. He, S. Cao, P. Zhou, J. Yu, Chin. J. Catal. 35(2014) 989-1007. |
[111] | C.M. Suarez, S. Hernández, N. Russo, Appl. Catal. A-Gen. 504(2015) 158-170. |
[112] | R. He, S. Cao, J. Yu, Y. Yang, Catal. Today 264 (2016) 221-228. |
[113] | F. Bensouici, M. Bououdina, A. Dakhel, R. Tala-Ighil, M. Tounane, A. Iratni, T. Souier, S. Liu, W. Cai, Appl. Surf. Sci. 395(2017) 110-116. |
[114] | M.M. Momeni, Y. Ghayeb, J. Mol, Catal. A-Chem. 417(2016) 107-115. |
[115] | F. Vaquero, R. Navarro, J. Fierro, Appl. Catal. B-Environ. 203(2017) 753-767. |
[116] |
J. Zhao, Y. He, Z. Chen, X. Zheng, X. Han, D. Rao, C. Zhong, W. Hu, Y. Deng, ACS Appl. Mater. Interfaces 11 (2018) 4915-4921.
URL PMID |
[117] | J. Xu, J. Yue, J. Niu, M. Chen, F. Teng, Chin. J. Catal. 39(2018) 1910-1918. |
[118] | J. Jiao, Y. Wei, Y. Zhao, Z. Zhao, A. Duan, J. Liu, Y. Pang, J. Li, G. Jiang, Y. Wang, Appl. Catal. B-Environ. 209(2017) 228-239. |
[119] | J. Jiao, Y. Wei, Z. Zhao, W. Zhong, J. Liu, J. Li, A. Duan, G. Jiang, Catal. Today 258 (2015) 319-326. |
[120] | H. Tang, H. Huang, X. Wang, K. Wu, G. Tang, C. Li, Appl. Surf. Sci. 379(2016) 296-303. |
[121] | S. Zhao, T. Liu, D. Shi, Y. Zhang, W. Zeng, T. Li, B. Miao, Appl. Surf. Sci. 351(2015) 862-868. |
[122] | Z. Song, L. Zhang, F. Xia, N.A. Webster, J. Song, B. Liu, H. Luo, Y. Gao, Inorg. Chem. Front. 3(2016) 1035-1042. |
[123] |
Y. Lai, J. Huang, Z. Cui, M. Ge, K.Q. Zhang, Z. Chen, L. Chi, Small 12 (2016) 2203-2224.
DOI URL PMID |
[124] |
J. Song, W. Han, S. Dong, C. Fang, Y. Cheng, D. Liu, X. Zhang, J. Colloid Interface Sci. 559(2020) 263-272.
URL PMID |
[125] | X. Xiao, Z. Sheng, L. Yang, F. Dong, Catal. Sci. Technol. 6(2016) 1507-1514. |
[126] |
D.A. Reddy, R. Ma, M.Y. Choi, T.K. Kim, Appl. Surf. Sci. 324(2015) 725-735.
DOI URL |
[127] | H. Yu, L. Jiang, H. Wang, B. Huang, X. Yuan, J. Huang, J. Zhang, G. Zeng, Small 15(2019), 1901008. |
[128] | X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, A. Alshahrie, X. Fang, Adv. Funct. Mater. 25(2015) 445-454. |
[129] | H. Zhuang, W. Xu, L. Lin, M. Huang, M. Xu, S. Chen, Z. Cai, J. Mater, Sci. Technol. 35(2019) 2312-2318. |
[130] |
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, Chem. Rev. 117(2017) 6225-6331.
URL PMID |
[131] |
P. Cai, W.R. Leow, X. Wang, Y.L. Wu, X. Chen, Adv. Mater. 29(2017), 1605529.
DOI URL |
[132] |
J. Zhao, Z. Liu, Q. Lu, Dyes Pigment. 134(2016) 553-561.
DOI URL |
[133] | T.T. Feng, H. Yin, H. Jiang, X. Chai, X. Li, D. Li, J. Wu, X.H. Liu, B. Sun, New J. Chem. 43(2019) 9606-9613. |
[134] | L. Xu, Y. Wan, H. Xie, Y. Huang, X. Qiao, L. Qin, H.J. Seo, J. Am. Ceram. Soc. 99(2016) 3964-3972. |
[135] | P. Steinegger, M. Asai, R. Dressler, R. Eichler, Y. Kaneya, A. Mitsukai, Y. Nagame, D. Piguet, T.K. Sato, M. Sch¨adel, J. Phys. Chem. C120 (2016) 7122-7132. |
[136] | K.H. Ng, L.S. Yuan, C.K. Cheng, K. Chen, C. Fang, J. Clean Prod. 233(2019) 209-225. |
[137] | G. Wang, L. Zhang, B. Yan, J. Luo, X. Su, F. Yue, ChemCatChem 11 (2019) 1057-1063. |
[138] |
F. Rahman, A. Zavabeti, M.A. Rahman, A. Arash, A. Mazumder, S. Walia, S. Sriram, M. Bhaskaran, S. Balendhran, ACS Appl. Mater. Interfaces 11 (2019) 40189-40195.
URL PMID |
[139] | J.Y. Do, R.K. Chava, K.K. Mandari, N.K. Park, H.J. Ryu, M.W. Seo, D. Lee, , T. Senthil, M. Kang, Appl. Catal. B-Environ. 237(2018) 895-910. |
[140] | B. Lin, C. Xue, X. Yan, G. Yang, G. Yang, B. Yang, Appl. Surf. Sci. 357(2015) 346-355. |
[141] | Y. Qiu, F. Ouyang, Appl. Surf. Sci. 403(2017) 691-698. |
[142] | X. Wang, C. Li, J. Phys. Chem. C 122 (2018) 21083-21096. |
[143] | C. Ai, P. Xie, X. Zhang, X. Zheng, J. Li, A. Kafizas, S. Lin, ACS Sustain. Chem. Eng. 7(2019) 5274-5282. |
[144] | F. Sun, S. Tan, H. Zhang, Z. Xing, R. Yang, B. Mei, Z. Jiang, J. Colloid InterfaceSci. 531(2018) 119-125. |
[145] | C. Zhao, C. Shao, X. Li, X. Li, R. Tao, Y. Liu, J. Alloys Compd. 747(2018) 916-925. |
[146] |
S. Zhao, J. Li, D. Cao, G. Zhang, J. Li, K. Li, Y. Yang, W. Wang, Y. Jin, R. Sun, ACS Appl. Mater. Interfaces 9 (2017) 12147-12164.
URL PMID |
[147] |
H. Jang, Y.J. Park, X. Chen, T. Das, M.S. Kim, J.H. Ahn, Adv. Mater. 28(2016) 4184-4202.
DOI URL PMID |
[148] | L. Ma, H. Fan, M. Li, H. Tian, J. Fang, G. Dong, J. Mater. Chem. A3 (2015) 22404-22412. |
[149] | A. Bag, N.E. Lee, J. Mater. Chem. C7 (2019) 13367-13383. |
[150] |
S.H. Yu, J. Cho, K.M. Sim, J.U. Ha, D.S. Chung, ACS Appl. Mater. Interfaces 8(2016) 6570-6576.
DOI URL PMID |
[151] |
Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye, ACS Nano 10 (2016) 4895-4919.
URL PMID |
[152] | J. Hu, D. Chen, Z. Mo, N. Li, Q. Xu, H. Li, J. He, H. Xu, J. Lu, Angew. Chem. 58(2019) 2073-2077. |
[153] | J.Y. Xu, L.F. Gao, C.X. Hu, Z.Y. Zhu, M. Zhao, Q. Wang, H.L. Zhang, Chem. Commun. 52(2016) 8107-8110. |
[154] |
H. Wang, X. Yang, W. Shao, S. Chen, J. Xie, X. Zhang, J. Wang, Y. Xie, J. Am. Chem. Soc. 137(2015) 11376-11382.
DOI URL PMID |
[155] | H. Yi, L. Qin, D. Huang, G. Zeng, C. Lai, X. Liu, B. Li, H. Wang, C. Zhou, F. Huang, Chem. Eng. J. 358(2019) 480-496. |
[156] | Y. Jia, S. Li, J. Gao, G. Zhu, F. Zhang, X. Shi, Y. Huang, C. Liu, Appl. Catal. B-Environ. 240(2019) 241-252. |
[157] | F. Dong, T. Xiong, S. Yan, H. Wang, Y. Sun, Y. Zhang, H. Huang, Z. Wu, J. Catal. 344(2016) 401-410. |
[158] | J. Xiong, P. Song, J. Di, H. Li, Z. Liu, J. Mater. Chem. A7 (2019) 25203-25226. |
[159] | L. Zhang, C. Yang, K. Lv, Y. Lu, Q. Li, X. Wu, Y. Li, X. Li, J. Fan, M. Li, Chin. J. Catal. 40(2019) 755-764. |
[160] | D. Gao, H. Yu, Y. Xu, Appl. Surf. Sci. 462(2018) 623-632. |
[161] |
E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen, A. Li, H. Rong, R. Lin, S. Ji, X.S. Zheng, J. Am. Chem. Soc. 141(2019) 16569-16573.
URL PMID |
[162] | D. Liu, Z. Jin, H. Li, G. Lu, Appl. Surf. Sci. 423(2017) 255-265. |
[163] | M.Z. Rahman, M. Batmunkh, M. Bat-Erdene, J.G. Shapter, C.B. Mullins, J. Mater. Chem. A6 (2018) 18403-18408. |
[164] | M. Zhu, C. Zhai, M. Fujitsuka, T. Majima, Appl. Catal. B-Environ. 221(2018) 645-651. |
[165] | Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Solar RRL 2(2018), 1800006. |
[166] | D. Chen, Q. Wang, R. Wang, G. Shen, J. Mater. Chem. A3 (2015) 10158-10173. |
[167] | L. Zhang, H. Bai, L. Liu, D.D. Sun, Chem. Eng. J. 334(2018) 1309-1315. |
[168] | P. Kuang, M. Sayed, J. Fan, B. Cheng, J. Yu, Adv. Energy Mater. 10(2020) 1903802. |
[169] | Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Chem. Eng. J. 334(2018) 1740-1748. |
[170] |
X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Nanoscale 9 (2017) 7408-7418.
DOI URL PMID |
[171] | W.Y. Lim, H. Wu, Y.F. Lim, G.W. Ho, J. Mater. Chem. A6 (2018) 11416-11423. |
[172] | R. Cao, H. Yang, S. Zhang, X. Xu, Appl. Catal. B-Environ. 258(2019), 117997. |
[173] | Q. Fan, J. Liu, Y. Yu, S. Zuo, B. Li, Appl. Surf. Sci. 391(2017) 360-368. |
[174] | J. Yang, D. Chen, Y. Zhu, Y. Zhang, Y. Zhu, Appl. Catal. B-Environ. 205(2017) 228-237. |
[175] |
M. Nawaz, W. Miran, J. Jang, D.S. Lee, Appl. Catal. B-Environ. 203(2017) 85-95.
DOI URL |
[176] | W. Jiang, Y. Zhu, G. Zhu, Z. Zhang, X. Chen, W. Yao, J. Mater. Chem. A5 (2017) 5661-5679. |
[177] | D.K. Lee, J.I. Choi, G.H. Lee, Y.H. Kim, J.K. Kang, Adv. Energy Mater. 6(2016), 1600583. |
[178] |
G. Wang, W. Xiao, J. Yu, Energy 86 (2015) 196-203.
DOI URL |
[179] |
D. You, B. Pan, F. Jiang, Y. Zhou, W. Su, Appl. Surf. Sci. 363(2016) 154-160.
DOI URL |
[180] | W. Li, C. Feng, S. Dai, J. Yue, F. Hua, H. Hou, Appl. Catal. B-Environ. 168(2015) 465-471. |
[181] |
X. Wang, W. Bi, P. Zhai, X. Wang, H. Li, G. Mailhot, W. Dong, Appl. Surf. Sci. 360(2016) 240-251.
DOI URL |
[182] | Y. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, Chem. Eng. J. 370(2019) 287-294. |
[183] | C. Liu, Y. Ding, W. Wu, Y. Teng, Chem. Eng. J. 306(2016) 22-30. |
[184] |
W. An, W. Cui, Y. Liang, J. Hu, L. Liu, Appl. Surf. Sci. 351(2015) 1131-1139.
DOI URL |
[185] | H. Li, W. Li, S. Gu, F. Wang, X. Liu, C. Ren, Mol. Catal. 433(2017) 301-312. |
[186] |
T. Oliveira, C. Santos, A. Lima, M. Lalic, J. Alloys Compd. 720(2017) 187-195.
DOI URL |
[187] |
Z. Guan, N. Yang, Z.Q. Ren, N. Zhong, R. Huang, W.X. Chen, B.B. Tian, X.D. Tang, P.H. Xiang, C.G. Duan, Nanoscale 11 (2019) 8744-8751.
DOI URL PMID |
[188] |
A. Watras, I. Carrasco, R. Pazik, R. Wiglusz, F. Piccinelli, M. Bettinelli, P. Deren, J. Alloys Compd. 672(2016) 45-51.
DOI URL |
[189] | W. Chee, H. Lim, Z. Zainal, N. Huang, I. Harrison, Y. Andou, J. Phys. Chem. C120(2016) 4153-4172. |
[190] |
Z. Wang, M. Hu, Y. Wei, J. Liu, Y. Qin, Appl. Surf. Sci. 362(2016) 525-531.
DOI URL |
[191] |
H. Li, J. Shang, H. Zhu, Z. Yang, Z. Ai, L. Zhang, ACS Catal. 6(2016) 8276-8285.
DOI URL |
[192] | X. An, C. Hu, H. Liu, J. Qu, J. Mater. Chem. A5 (2017) 24989-24994. |
[193] |
F. Wang, W. Li, S. Gu, H. Li, X. Liu, M. Wang, ACS Sustain. Chem. Eng. 4(2016) 6288-6298.
DOI URL |
[194] | X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A3 (2015) 2485-2534. |
[195] | B. Wang, Y. Wang, L. Fan, Y. Cai, C. Xia, Y. Liu, R. Raza, P.A. van Aken, H. Wang, J. Mater. Chem. A4 (2016) 15426-15436. |
[196] | B. Luo, F. Li, K. Xu, Y. Guo, Y. Liu, Z. Xia, J.Z. Zhang, J. Mater. Chem. C7 (2019) 2781-2808. |
[197] |
Z. Liu, X. Lu, D. Chen, ACS Sustain. Chem. Eng. 6(2018) 10289-10294.
DOI URL |
[198] |
H. Shang, M. Li, H. Li, S. Huang, C. Mao, Z. Ai, L. Zhang, Environ. Sci. Technol. 53(2019) 6444-6453.
DOI URL PMID |
[199] |
M. Weidner, A. Fuchs, T.J. Bayer, K. Rachut, P. Schnell, G.K. Deyu, A. Klein, Adv. Funct. Mater. 29(2019), 1807906.
DOI URL |
[200] |
S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Adv. Sci. 4(2017), 1600337.
DOI URL |
[201] |
S.O. Ganiyu, M. Zhou, C.A. Martínez-Huitle, Appl. Catal. B-Environ. 235(2018) 103-129.
DOI URL |
[202] |
H. Li, W. Li, F. Wang, X. Liu, C. Ren, Appl. Catal. B-Environ. 217(2017) 378-387.
DOI URL |
[203] |
R. Abazari, A.R. Mahjoub, J. Shariati, S. Noruzi, J. Clean. Prod. 221(2019) 582-586.
DOI URL |
[204] |
R. Meinier, R. Sonnier, P. Zavaleta, S. Suard, L. Ferry, J. Hazard. Mater. 342(2018) 306-316.
DOI URL PMID |
[205] |
F. Wang, W. Li, S. Gu, H. Li, X. Wu, X. Liu, Chem.-Eur. J. 22(2016) 12859-12867.
DOI URL PMID |
[206] |
R. Li, H. Han, F. Zhang, D. Wang, C. Li, Energ. Environ. Sci. 7(2014) 1369-1376.
DOI URL |
[207] |
R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, C. Li, Nat. Commun. 4(2013) 1432.
DOI URL PMID |
[208] |
Y. Sun, J. Liao, F. Dong, S. Wu, L. Sun, Chin. J. Catal. 40(2019) 362-370.
DOI URL |
[209] |
H. He, D. Sun, Q. Zhang, F. Fu, Y. Tang, J. Guo, M. Shao, H. Wang, ACS Appl. Mater. Interfaces 9 (2017) 6093-6103.
URL PMID |
[210] |
M.V. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, E. Selli, Appl. Catal. B-Environ. 186(2016) 157-165.
DOI URL |
[211] |
M. Sun, W. Zhang, Y. Sun, Y. Zhang, F. Dong, Chin. J. Catal. 40(2019) 826-836.
DOI URL |
[212] |
M. Huang, C. Li, L. Zhang, Q. Chen, Z. Zhen, Z. Li, H. Zhu, Adv. Energy Mater. 8(2018), 1802198.
DOI URL |
[213] |
J. Li, N. Wu, Catal. Sci. Technol. 5(2015) 1360-1384.
DOI URL |
[214] |
M. Pirhashemi, A. Habibi-Yangjeh, J. Mater. Sci. Technol. 34(2018) 1891-1901.
DOI URL |
[215] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29(2017), 1601694.
DOI URL |
[216] | M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mater. Sci. Technol. 34(2018) 1511-1525. |
[217] | W. Yu, S. Zhang, J. Chen, P. Xia, M.H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A6 (2018) 15668-15674. |
[218] | W. Yu, D. Xu, T. Peng, J. Mater. Chem. A3 (2015) 19936-19947. |
[219] |
W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B-Environ. 219(2017) 693-704.
DOI URL |
[220] |
T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, ChemCatChem 11 (2019) 1394-1411.
DOI URL |
[221] |
Y. Wang, N. Lu, M. Luo, L. Fan, K. Zhao, J. Qu, J. Guan, X. Yuan, Appl. Surf. Sci. 463(2019) 234-243.
DOI URL |
[222] |
H. Che, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C. Li, H. Dong, Catal. Sci. Technol. 8(2018) 622-631.
DOI URL |
[223] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B-Environ. 243(2019) 556-565.
DOI URL |
[224] |
X. Jia, Q. Han, M. Zheng, H. Bi, Appl. Surf. Sci. 489(2019) 409-419.
DOI URL |
[225] |
F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41(2020) 9-20.
DOI URL |
[226] |
Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Mater. Today 21(2018) 1042-1063.
DOI URL |
[227] |
Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, Chem. Eng. J. 337(2018) 506-514.
DOI URL |
[228] |
J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8(2018), 1701503.
DOI URL |
[229] |
Z. Li, X. Meng, Z. Zhang, J. Colloid Interface Sci. 537(2019) 345-357.
DOI URL PMID |
[230] |
T. Jiang, K. Wang, T. Guo, X. Wu, G. Zhang, Chin. J. Catal. 41(2020) 161-169.
DOI URL |
[231] | M. Zalfani, B. Van Der Schueren, Z.Y. Hu, J.C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. Van Tendeloo, B.L. Su, J. Mater. Chem. A3 (2015) 21244-21256. |
[232] |
S. Bao, Q. Wu, S. Chang, B. Tian, J. Zhang, Catal. Sci. Technol. 7(2017) 124-132.
DOI URL |
[233] | M. Pálmai, E.M. Zahran, S. Angaramo, S. Bálint, Z. Pászti, M.R. Knecht, L.G. Bachas, J. Mater. Chem. A5 (2017) 529-534. |
[234] | J. Bian, Y. Qu, X. Zhang, N. Sun, D. Tang, L. Jing, J. Mater. Chem. A6 (2018) 11838-11845. |
[235] |
T. Zhang, J. Su, L. Guo, CrystEngComm 18 (2016) 8961-8970.
DOI URL |
[236] |
D. Wang, Z. Guo, Y. Peng, W. Yuan, Chem. Eng. J. 281(2015) 102-108.
DOI URL |
[237] |
Z. Jiang, Y. Liu, M. Li, T. Jing, B. Huang, X. Zhang, X. Qin, Y. Dai, Sci. Rep. 6(2016) 22727.
DOI URL PMID |
[238] |
X. Wu, J. Zhao, L. Wang, M. Han, M. Zhang, H. Wang, H. Huang, Y. Liu, Z. Kang, Appl. Catal. B-Environ. 206(2017) 501-509.
DOI URL |
[239] |
S.S. Patil, M.G. Mali, M.A. Hassan, D.R. Patil, S.S. Kolekar, S.W. Ryu, Sci. Rep. 7(2017) 8404.
DOI URL PMID |
[240] | X. Xu, S. Kou, X. Guo, X. Li, X. Ma, H. Mao, J. Phys. Chem. C121 (2017) 16257-16265. |
[241] |
Y. Liu, Z.H. Yang, P.P. Song, R. Xu, H. Wang, Appl. Surf. Sci. 430(2018) 561-570.
DOI URL |
[242] |
J. Lv, J. Zhang, J. Liu, Z. Li, K. Dai, C. Liang, ACS Sustain. Chem. Eng. 6(2017) 696-706.
DOI URL |
[243] |
J. Tian, P. Hao, N. Wei, H. Cui, H. Liu, ACS Catal. 5(2015) 4530-4536.
DOI URL |
[244] |
Z. Xiu, Y. Cao, Z. Xing, T. Zhao, Z. Li, W. Zhou, J. Colloid Interface Sci. 533(2019) 24-33.
URL PMID |
[245] |
Z. Dai, F. Qin, H. Zhao, J. Ding, Y. Liu, R. Chen, ACS Catal. 6(2016) 3180-3192.
DOI URL |
[246] | X. Li, S. Fang, L. Ge, C. Han, P. Qiu, W. Liu, Appl. Catal. B-Environ. 176(2015) 62-69. |
[247] |
J. Lv, K. Dai, J. Zhang, L. Geng, C. Liang, Q. Liu, G. Zhu, C. Chen, Appl. Surf. Sci. 358(2015) 377-384.
DOI URL |
[248] |
J. Ke, X. Duan, S. Luo, H. Zhang, H. Sun, J. Liu, M. Tade, S. Wang, Chem. Eng. J. 313(2017) 1447-1453.
DOI URL |
[249] | X. Meng, Z. Zhang, J. Catal. 344(2016) 616-630. |
[250] |
B. Zhang, J. Li, Y. Gao, R. Chong, Z. Wang, L. Guo, X. Zhang, C. Li, J. Catal. 345(2017) 96-103.
DOI URL |
[251] |
J. Lv, K. Dai, J. Zhang, L. Lu, C. Liang, L. Geng, Z. Wang, G. Yuan, G. Zhu, Appl. Surf. Sci. 391(2017) 507-515.
DOI URL |
[252] |
X. Qian, D. Yue, Z. Tian, M. Reng, Y. Zhu, M. Kan, T. Zhang, Y. Zhao, Appl. Catal. B-Environ. 193(2016) 16-21.
DOI URL |
[253] |
Y. Jia, S. Zhan, S. Ma, Q. Zhou, ACS Appl. Mater. Interfaces 8 (2016) 6841-6851.
DOI URL PMID |
[254] |
B. Li, C. Lai, G. Zeng, L. Qin, H. Yi, D. Huang, C. Zhou, X. Liu, M. Cheng, P. Xu, ACS Appl. Mater. Interfaces 10 (2018) 18824-18836.
DOI URL PMID |
[255] |
Y. Liang, S. Lin, L. Liu, J. Hu, W. Cui, Appl. Catal. B-Environ. 164(2015) 192-203.
DOI URL |
[256] |
S. Li, S. Hu, W. Jiang, Y. Liu, J. Liu, Z. Wang, J. Colloid Interface Sci. 501(2017) 156-163.
DOI URL PMID |
[257] |
Y. Xiang, P. Ju, Y. Wang, Y. Sun, D. Zhang, J. Yu, Chem. Eng. J. 288(2016) 264-275.
DOI URL |
[258] |
Y. Su, G. Tan, T. Liu, L. Lv, Y. Wang, X. Zhang, Z. Yue, H. Ren, A. Xia, Appl. Surf. Sci. 457(2018) 104-114.
DOI URL |
[259] |
H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Appl. Catal. B-Environ. 242(2019) 76-84.
DOI URL |
[1] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
[2] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
[3] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[4] | Angga Hermawan, Yusuke Asakura, Miki Inada, Shu Yin. A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature [J]. J. Mater. Sci. Technol., 2020, 51(0): 119-129. |
[5] | Zhongfu Li, Zhaohui Wu, Rongan He, Long Wan, Shiying Zhang. In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 56(0): 151-161. |
[6] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[7] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
[8] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[9] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
[10] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[11] | Dapeng Cao, Jingbo Zhang, Anchen Wang, Xiaohui Yu, Baoxiu Mi. Fabrication of Cr-doped SrTiO3/Ti-doped α-Fe2O3 photoanodes with enhanced photoelectrochemical properties [J]. J. Mater. Sci. Technol., 2020, 56(0): 189-195. |
[12] | Yang Li, Xin Li, Huaiwu Zhang, Jiajie Fan, Quanjun Xiang. Design and application of active sites in g-C3N4-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 69-88. |
[13] | Zizhan Liang, Rongchen Shen, Hau Ng Yun, Peng Zhang, Quanjun Xiang, Xin Li. A review on 2D MoS2 cocatalysts in photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 89-121. |
[14] | Emese Lantos, László Mérai, Ágota Deák, Juan Gómez-Pérez, Dániel Sebők, Imre Dékány, Zoltán Kónya, László Janovák. Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material [J]. J. Mater. Sci. Technol., 2020, 41(0): 159-167. |
[15] | Minghui Xiong, Juntao Yan, Bo Chai, Guozhi Fan, Guangsen Song. Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 179-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||