J. Mater. Sci. Technol. ›› 2020, Vol. 56: 69-88.DOI: 10.1016/j.jmst.2020.03.033
• Invited Review • Previous Articles Next Articles
Yang Lia,b, Xin Lic, Huaiwu Zhanga, Jiajie Fand, Quanjun Xianga,*()
Received:
2020-03-13
Revised:
2020-03-22
Accepted:
2020-03-23
Published:
2020-11-01
Online:
2020-11-20
Contact:
Quanjun Xiang
Yang Li, Xin Li, Huaiwu Zhang, Jiajie Fan, Quanjun Xiang. Design and application of active sites in g-C3N4-based photocatalysts[J]. J. Mater. Sci. Technol., 2020, 56: 69-88.
Fig. 2. Schematic illustration of the factors affecting the quantity and quality of active sites on g-C3N4. Two main factors influence the active sites of g-C3N4: basal engineering, including morphology regulation and surface treatment; and hybrid engineering, including heteroatom doping and hybridization.
Fig. 3. Schematic illustration of the factors affecting the quantity and quality of active sites over g-C3N4 by basal engineering. The effect of basal engineering on the active site of g-C3N4 is mainly reflected in morphology control and surface treatment during the modification of precursors and traditional g-C3N4.
Fig. 4. TEM images of (a-c) the sample obtained from the precursor calcined at 500℃ (DCN-550) and (d-f) the sample obtained from the precursor calcined at 500℃ (DCN-600) samples; (g) Schematic illustration for the synthetic process of nanocage-like carbon nitride; (h) Schematic diagram of the possible photocatalytic H2 mechanism for nanocage-like structured g-C3N4 [74].
Fig. 5. (a) The molecular structures of g-C3N4 (CN0) and the modified g-C3N4 (CNx); Dependence of the H2 production rate on the content of (b) carbon and (c) nitrogen atoms, (d) C/N atomic ratio and (e) oxygen atoms [75].
Fig. 6. SEM images of (a) Melamine-derived PCN (CNB) samples, (b) Porous oxygen-rich PCN nanosheets (CNPS-O) samples and (c) -NH2 groups on the PCN nanosheets (CNPS-NH2) samples; (d and e) TEM images; (f) AFM image and (g) EDS elemental mapping images of CNPS-NH2 samples; (h) Schematic illustration of the preparation process of CNPS-NH2 samples [87].
Fig. 7. SEM images of (a) CN-0 (g-C3N4 nanosheets), (b) CN-1 (g-C3N4 nanosheets were prepared via plasma treatment in H2 atmosphere at 500℃), (c) CN-2 (g-C3N4 nanosheets were prepared via plasma treatment in H2 atmosphere at room temperature); TEM images of (d) CN-0, (e) CN-1, (f) CN-2; (g) Photocatalytic H2 evolution mechanism diagram of hydrogenated g-C3N4, hydrogenated g-C3N4 with hydrophilic group C-N-H, defect state, and exfoliated morphology obtained after g-C3N4 nanosheet treatment with hydrogen plasma at room temperature. Hydrophilic groups C-N-H enhanced the adsorption capacity of g-C3N4 for water molecules [92].
Fig. 8. SEM images of the as-obtained (a, b) LiCl-CN-4 h samples and the cross section (c) of the hollow tubes; TEM images of (d, e) the synthesized products and the high-resolution TEM image (f) of the hexagonal structures on the sample surface; (g) XPS spectra of LiCl-CN-4 h before and after Pb(II) adsorption; (h) Pb L3-edge EXAFS spectra for samples after Pb(II) treatment [105].
Fig. 9. (a) Illustration of the synthesis of IrO2/GCN; (b) XRD patterns of 40-IG (IrO2/GCN containing 40 wt.% IrO2), IrO2 NPs, and GCN; (c) TEM image of 40-IG. (d, e) HRTEM of 40-IG. (f) The corresponding FFT patterns of (e) [121].
Improvement strategy | Photocatalysts | Preparation methods | Active sites | Application | Photocatalytic activity | Refs. |
---|---|---|---|---|---|---|
Increase specific surface area | g-C3N4 nanorods | Supramolecular assembly | Edges, nitrogen defects | Photocatalytic H2 production | 118.5 μmol h-1 6.8%@420 nm | [ |
Increase specific surface area | g-C3N4 nanosheets | Thermal treatment | Edges, defective sites | Photocatalytic H2 production | 1233.5 μmol h-1 g-1 | [ |
Increase specific surface area | g-C3N4 microspheres | Hard template | Edges | Photocatalytic H2 production | 5785 μmol h-1 g-1 | [ |
Surface activity treatment | Soluble g-C3N4 nanosheets | Hydrothermal treatment | Edges, hydrophilic groups | Photocatalytic H2 production | 17.98 μmol h-1 | [ |
Surface activity treatment | g-C3N4 nanosheets | Molecular assembly | Edges, cyano groups, adsorption sites | Photocatalytic benzaldehyde degradation | - | [ |
Surface activity treatment | g-C3N4 nanosheets | Plasma treatment | Edges, hydrophilic groups | Photocatalytic H2 production | 1230 μmol h-1 g-1 7.3%@420 nm | [ |
Heteroatoms doping | Crystallized LiCl-intercalated g-C3N4 | Molten salts method | Edges, Cl and Li atoms, adsorption sites | Photocatalytic heavy metal removal | - | [ |
Heteroatoms doping | S-doped g-C3N4 | Supramolecular assembly | Edges, S atoms, adsorption sites | Photocatalytic heavy metal removal | - | [ |
Interfacial interaction | Graphene-supported 1D nano-arrays of crystalline g-C3N4 | Molten salts method | Edges, heterojunction, adsorption sites | Photocatalytic CO2 reduction | 12.63 μmol h-1 g-1 0.254%@420 nm (The total quantum yield of CO2 conversion) | [ |
Interfacial interaction | ZnFe2O4/ g-C3N4 | Thermal treatment | Edges, heterojunction | Photocatalytic H2 production | 200.77 μmol h-1 g-1 | [ |
Table 1 A brief summary of improved the active sites of g-C3N4.
Improvement strategy | Photocatalysts | Preparation methods | Active sites | Application | Photocatalytic activity | Refs. |
---|---|---|---|---|---|---|
Increase specific surface area | g-C3N4 nanorods | Supramolecular assembly | Edges, nitrogen defects | Photocatalytic H2 production | 118.5 μmol h-1 6.8%@420 nm | [ |
Increase specific surface area | g-C3N4 nanosheets | Thermal treatment | Edges, defective sites | Photocatalytic H2 production | 1233.5 μmol h-1 g-1 | [ |
Increase specific surface area | g-C3N4 microspheres | Hard template | Edges | Photocatalytic H2 production | 5785 μmol h-1 g-1 | [ |
Surface activity treatment | Soluble g-C3N4 nanosheets | Hydrothermal treatment | Edges, hydrophilic groups | Photocatalytic H2 production | 17.98 μmol h-1 | [ |
Surface activity treatment | g-C3N4 nanosheets | Molecular assembly | Edges, cyano groups, adsorption sites | Photocatalytic benzaldehyde degradation | - | [ |
Surface activity treatment | g-C3N4 nanosheets | Plasma treatment | Edges, hydrophilic groups | Photocatalytic H2 production | 1230 μmol h-1 g-1 7.3%@420 nm | [ |
Heteroatoms doping | Crystallized LiCl-intercalated g-C3N4 | Molten salts method | Edges, Cl and Li atoms, adsorption sites | Photocatalytic heavy metal removal | - | [ |
Heteroatoms doping | S-doped g-C3N4 | Supramolecular assembly | Edges, S atoms, adsorption sites | Photocatalytic heavy metal removal | - | [ |
Interfacial interaction | Graphene-supported 1D nano-arrays of crystalline g-C3N4 | Molten salts method | Edges, heterojunction, adsorption sites | Photocatalytic CO2 reduction | 12.63 μmol h-1 g-1 0.254%@420 nm (The total quantum yield of CO2 conversion) | [ |
Interfacial interaction | ZnFe2O4/ g-C3N4 | Thermal treatment | Edges, heterojunction | Photocatalytic H2 production | 200.77 μmol h-1 g-1 | [ |
Fig. 10. Possible mechanisms of active sites in improving the photocatalytic activity of g-C3N4. Morphology regulation and surface activity treatment can directly increase the number of active sites by exposing additional edges and introducing active substances. Carrier migration and substrate adsorption can indirectly increase the number of active sites in the photocatalysis by increasing the concentration of carriers and substrates.
Fig. 11. (a) The formation process of the g-C3N4 nanotubes; (b) Photocatalytic hydrogen evolution with 10 vol% triethanolamine aqueous solution, 3 wt.% Pt as a co-catalyst and 0.015 g photocatalysts under visible light irradiation; (c) wavelength dependence of external quantum efficiency for g-C3N4 nanotubes [77].
Fig. 12. (a) SEM image of the few-layer C3N4, (b) TEM image of the few-layer C3N4, (c) Magnified TEM image of the few-layer C3N4. (d, e) AFM image and corresponding height profiles along the white line in d of the few-layer C3N4. (f) XRD patterns of bulk C3N4, microtube C3N4 and few-layer C3N4; (g) Charge transfer and separation mechanism of few-layer and bulk C3N4 under visible light irradiation [165].
Fig. 13. (a) Schematic of the synthesis of nanosheet-assembled hierarchical flower-like g-C3N4 (CMN); (b) Mechanism diagram of CMN for the photoreduction of CO2. Compared with g-C3N4, the CMN exhibited improved photoreduction capability for CO2 due to its high specific surface area and enhanced adsorption capacity for CO2 [32].
Fig. 14. (a) Graphical illustration for the synthesis of soluble g-C3N4 (SCN) nanosheets by a first hydrothermal delamination and its following vacuum freezing-drying technology and the microstructure formation of the soluble g-C3N4 (SCN) nanosheets; (b, c) Typical TEM and (d, e) AFM images of soluble g-C3N4 (SCN) nanosheets; (f) The photocatalytic H2-production activities of various samples: (f: a) SCN, (f: b) bulk g-C3N4, (f: c) SCN/g-C3N4 (0.1 wt.%), (f: d) SCN/g-C3N4 (0.3 wt.%), (f: e) SCN/g-C3N4 (0.5 wt.%), (f: f) SCN/g-C3N4 (0.8 wt.%), (f: g) SCN/g-C3N4 (1 wt.%), (f: h) SCN/g-C3N4 (5 wt.%) and (f: I) SCN/g-C3N4 (10 wt.%); (g) Photocatalytic cycling test of typical (g: b) g-C3N4 and (g: d) SCN/g-C3N4 (0.3 wt.%) photocatalysts [169].
Fig. 15. (a) Proposed formation process of cyano group introduction sample; (b) Proposed reaction mechanism for benzylamine oxidation. Reaction conditions: benzylamine (0.2 mmol), acetonitrile (2 mL), catalyst (10 mg), O2 (1 atm), 60 °C, LED light; The optimized structures and the corresponding bond lengths of (c) pure (g-C3N4)-Pb(II) and (d-i) (S-g-C3N4)-Pb(II) complexes [54,170].
Fig. 16. (a) Effect of w/w% Fe dopant on the performance of the g-C3N4 (gCN). Conditions: pH = natural (3-4), [Catalyst] =0.1 g L-1, [Peroxymonosulfate (PMS)] = 0.4 g L-1 and [Acid orange 7 (AO7)] = 8.5 mg L-1; (b) Proposed mechanism of PMS activation by g-C3N4 with 2.5 w/w% Fe3+ dopant (gCN-Fe3) for AO7 removal [176].
Fig. 17. (a-d) Optimized atomic configurations of oxygen intermediates (OO* and *OOH) adsorbed on NiCo2S4@N-GN (a, b) and NiCo2S4@g-C3N4 (c, d); (e) Calculated d-band positions of metallic Ni and Co sites and (f) free energy diagram of ORR and OER processes on bare NiCo2S4, NiCo2S4@NGN, and NiCo2S4@g-C3N4 [194].
Fig. 18. Adsorption and activation of NO molecules. Optimized geometric structure of NO molecules adsorption on g-C3N4 (CN) and (BiO)2CO3 nanospheres decorated g-C3N4 hybrid heterostructure (CN-BOC) (a), gray, brown, purple and red and pink spheres stand for C, N, Bi and O atoms, respectively; all lengths are given in ?; Eads stand for the adsorption energy of adsorption molecule; in situ DRIFTS spectra on CN (b) and CN-BOC (c) samples during NO adsorption processes; Adsorption and activation of O2 molecules. DMPO spin-trapping ESR spectra (O·2-) of CN and CN-BOC-4 samples (d); optimized geometric structure of the adsorption of O2 molecules on CN and CN-BOC (e), gray, brown, purple and red and pink spheres stand for C, N, Bi and O atoms, respectively; all lengths are given in ?; Eads stand for the adsorption energy of adsorption molecule [196].
Fig. 19. TEM images of (a, b) ZFO-50 (ZnFe2O4-modified g-C3N4 photocatalysts, where 50 represents the volume of ZnFe2O4 solution), (c) ZFO-100 (ZnFe2O4-modified g-C3N4 photocatalysts, where 100 represents the volume of ZnFe2O4 solution) and (d) ZFO-200 (ZnFe2O4-modified g-C3N4 photocatalysts, where 200 represents the volume of ZnFe2O4 solution) photocatalysts; Inset of (c) is a magnified image of the area in the white square; (e) Schematic of the band structure and charge transfer process in ZnFe2O4/g-C3N4 for photocatalytic hydrogen generation [206].
Fig. 20. (a) Eleven adsorption sites in tri-s-triazine-based g-C3N4 [130]; (b) Optimized adsorption configurations of H2, N2, H2O, CO, CO2 and CH4 on g-C3N4 [212].
Fig. 21. Brief summary of the application of g-C3N4-based photocatalytic materials rich in active sites in the field of photocatalysis. For practical applications, the following four main strategies can be applied to improve the photocatalytic activity of g-C3N4-based photocatalytic materials through active site enhancement: morphology regulation, surface treatment, heteroatom doping, and interfacial interaction.
[1] |
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, Y. Xie, Nat. Commun. 3(2012) 1057.
URL PMID |
[2] |
F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, J. Am. Chem. Soc. 136(2014) 6826-6829.
URL PMID |
[3] | Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie, Angew. Chem. Int. Edit. 51(2012) 8727-8731. |
[4] | Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, F. Lei, S. Wei, Y. Xie, Adv. Energy Mater. 4(2014), 1300611. |
[5] | L. Liang, Y. Sun, F. Lei, S. Gao, Y. Xie, J. Mater. Chem. A2 (2014) 10647-10653. |
[6] |
Q. Fu, W.X. Li, Y. Yao, H. Liu, H.Y. Su, D. Ma, X.K. Gu, L. Chen, Z. Wang, H. Zhang, B. Wang, X. Bao, Science 328 (2010) 1141-1144.
DOI URL PMID |
[7] | Q. Xiang, F. Cheng, D. Lang, ChemSusChem 9 (2016) 996-1002. |
[8] | Q. Xiang, D. Lang, T. Shen, F. Liu, Appl. Catal. B162 (2015) 196-203. |
[9] | Q. Xiang, X. Ma, D. Zhang, H. Zhou, Y. Liao, H. Zhang, S. Xu, I. Levchenko, K. Bazaka, J. Colloid Interf. Sci. 556(2019) 376-385. |
[10] | D. Zhang, X. Ma, H. Zhang, Y. Liao, Q. Xiang, Mater. Today Energy 10 (2018) 132-140. |
[11] | Y. Xia, Q. Li, K. Lv, M. Li, Appl. Surf. Sci. 398(2017) 81-88. |
[12] | R. Shen, J. Xie, Q. Xiang, X. Chen, J. Jiang, X. Li, Chin. J. Catal. 40(2019) 240-288. |
[13] | R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Appl. Surf. Sci. 471(2019) 43-87. |
[14] | X. Ma, Q. Xiang, Y. Liao, T. Wen, H. Zhang, Appl. Surf. Sci. 457(2018) 846-855. |
[15] | D. Lang, T. Shen, Q. Xiang, ChemCatChem 7 (2015) 943-951. |
[16] | L. Cheng, D. Zhang, Y. Liao, H. Zhang, Q. Xiang, Sol. RRL 3 (2019) 19000. |
[17] | L. Cheng, D. Zhang, Y. Liao, F. Li, H. Zhang, Q. Xiang, J. Colloid Interf. Sci. 555(2019) 94-103. |
[18] | F. Chen, H. Yang, X. Wang, H. Yu, Chin. J. Catal. 38(2017) 296-304. |
[19] | J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B243 (2019) 556-565. |
[20] | K. He, J. Xie, M. Li, X. Li, Appl. Surf. Sci. 430(2018) 208-217. |
[21] | K. He, J. Xie, Z.Q. Liu, N. Li, X. Chen, J. Hu, X. Li, J. Mater. Chem. A6 (2018) 13110-13122. |
[22] | Y. Li, X. Feng, Z. Lu, H. Yin, F. Liu, Q. Xiang, J. Colloid Interf. Sci. 513(2018) 866-876. |
[23] | W. Liu, J. Shen, Q. Liu, X. Yang, H. Tang, Appl. Surf. Sci. 462(2018) 822-830. |
[24] | W. Liu, J. Shen, X. Yang, Q. Liu, H. Tang, Appl. Surf. Sci. 456(2018) 369-378. |
[25] | K. Qi, Y. Xie, R. Wang, S.-y. Liu, Z. Zhao, Appl. Surf. Sci. 466(2019) 847-853. |
[26] | H. Tang, R. Wang, C. Zhao, Z. Chen, X. Yang, D. Bukhvalov, Z. Lin, Q. Liu, Chem. Eng. J. 374(2019) 1064-1075. |
[27] | X. Wu, F. Chen, X. Wang, H. Yu, Appl. Surf. Sci. 427(2018) 645-653. |
[28] | X. Wu, J. Cheng, X. Li, Y. Li, K. Lv, Appl. Surf. Sci. 465(2019) 1037-1046. |
[29] | Q. He, F. Zhou, S. Zhan, Y. Yang, Y. Liu, Y. Tian, N. Huang, Appl. Surf. Sci. 391(2017) 423-431. |
[30] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8(2009) 76-80.
URL PMID |
[31] | X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2(2012) 1596-1606. |
[32] | F. Li, D. Zhang, Q. Xiang, Chem. Commun. 56(2020) 2443-2446. |
[33] | Y. Li, F. Gong, Q. Zhou, X. Feng, J. Fan, Q. Xiang, Appl. Catal. B26 (2020), 118381. |
[34] | M.J. Liu, S. Wageh, A.A. Al-Ghamdi, P.F. Xia, B. Cheng, L.Y. Zhang, J.G. Yu, Chem. Commun. 55(2019) 14023-14026. |
[35] | P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaroniec, J. Mater. Chem. A5 (2017) 3230-3238. |
[36] | B. Zhu, B. Cheng, L. Zhang, J. Yu, Carbon Energy 1 (2019) 32-56. |
[37] | J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li, L. Sun, Adv. Funct. Mater. 29(2019), 1808367. |
[38] | E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.H. Kim, Renew. Sust. Energ. Rev. 82(2018) 894-900. |
[39] | H. Dou, Y. Qin, F. Pan, D. Long, X. Rao, G.Q. Xu, Y. Zhang, Catal. Sci. Technol. 9(2019) 4898-4908. |
[40] |
L. Jiang, K. Wang, X. Wu, G. Zhang, S. Yin, ACS Appl. Mater. Interfaces 11(2019) 26898-26908.
URL PMID |
[41] | Y. Zhang, Q. Li, Y. Long, J. Zou, Z. Song, C. Liu, L. Liu, F. Qi, B. Xu, Z. Chen, Appl. Catal. B254 (2019) 569-579. |
[42] | M. Zhang, C. Lai, B. Li, D. Huang, G. Zeng, P. Xu, L. Qin, S. Liu, X. Liu, H. Yi, M. Li, C. Chu, Z. Chen, J. Catal. 369(2019) 469-481. |
[43] |
Y. Sun, S. Gao, F. Lei, Y. Xie, Chem. Soc. Rev. 44(2015) 623-636.
URL PMID |
[44] | J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small 13 (2017), 1603938. |
[45] |
Y. Li, X. Li, H. Zhang, Q. Xiang, Nanoscale Horiz. 5(2020) 765-786.
URL PMID |
[46] | X. Wu, X. Wang, F. Wang, H. Yu, Appl. Catal. B247 (2019) 70-77. |
[47] | G. Ba, Z. Liang, H. Li, N. Du, J. Liu, W. Hou, Appl. Catal. B253 (2019) 359-368. |
[48] | C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, X. Wen, L. Qin, Appl. Catal. B220 (2018) 202-210. |
[49] | J.W. Zhang, S. Gong, N. Mahmood, L. Pan, X. Zhang, J.J. Zou, Appl. Catal. B221(2018) 9-16. |
[50] | Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, ACS Sustain. Chem. Eng. 7(2019) 5801-5807. |
[51] | W. Iqbal, B. Yang, X. Zhao, M. Waqas, M. Rauf, C. Guo, J. Zhang, Y. Mao, Appl. Catal. A-General 573 (2019) 13-21. |
[52] | Y. Wang, Q. Xia, X. Bai, Z. Ge, Q. Yang, C. Yin, S. Kang, M. Dong, X. Li, Appl. Catal. B239 (2018) 196-203. |
[53] | J.W. Su, R.X. Ge, Y. Dong, F. Hao, L. Chen, J. Mater. Chem. A6 (2018) 14025-14042. |
[54] | A. Seza, F. Soleimani, N. Naseri, M. Soltaninejad, S.M. Montazeri, S.K. Sadrnezhaad, M.R. Mohammadi, H.A. Moghadam, M. Forouzandeh, M.H. Amin, Appl. Surf. Sci. 440(2018) 153-161. |
[55] | T. Kanagaraj, S. Thiripuranthagan, S.M.K. Paskalis, H. Abe, Appl. Surf. Sci. 426(2017) 1030-1045. |
[56] | S. Le, T. Jiang, Q. Zhao, X. Liu, Y. Li, B. Fang, M. Gong, RSC Adv. 6(2016) 38811-38819. |
[57] | C. Liu, H. Huang, L. Ye, S. Yu, N. Tian, X. Du, T. Zhang, Y. Zhang, Nano Energy 41 (2017) 738-748. |
[58] | Q. Liu, X. Wang, Q. Yang, Z. Zhang, X. Fang, Appl. Surf. Sci. 450(2018) 46-56. |
[59] | S. Obregón, A. Vázquez, M.A. Ruíz-Gómez, V. Rodríguez-González, Appl. Surf. Sci. 488(2019) 205-212. |
[60] | F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan, Q. Fu, W. Luo, H. Zeng, Z. Zheng, B. Khan, H. Shen, X. Zu, S. Li, L. Qiao, Appl. Catal. B237 (2018) 1082-1090. |
[61] | X. Song, Q. Yang, X. Jiang, M. Yin, L. Zhou, Appl. Catal. B217 (2017) 322-330. |
[62] | H.Y. Wang, M.X. Li, Q.J. Lu, Y.M. Cen, Y.Y. Zhang, S.Z. Yao, ACS Sustain. Chem. Eng. 7(2019) 625-631. |
[63] | Z. Wang, M. Chen, Y. Huang, X. Shi, Y. Zhang, T. Huang, J. Cao, W. Ho, S.C. Lee, Appl. Catal. B239 (2018) 352-361. |
[64] | W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng, G. Chen, ACS Energy Lett. 3(2018) 514-519. |
[65] | H.B. Fang, X.H. Zhang, J. Wu, N. Li, Y.Z. Zheng, X. Tao, Appl. Catal. B225(2018) 397-405. |
[66] | Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, Y. Leia, S. Yuan, H. Li, Appl. Catal. B225 (2018) 154-161. |
[67] | Y. Gao, F. Hou, S. Hu, B. Wu, Y. Wang, H. Zhang, B. Jiang, H. Fu, ChemCat Chem10 (2018) 1330-1335. |
[68] | M. Wu, J. Zhang, B.B. He, H.W. Wang, R. Wang, Y.S. Gong, Appl. Catal. B241(2019) 159-166. |
[69] | S. Zhao, Y. Zhang, Y. Zhou, Y. Wang, K. Qiu, C. Zhang, J. Fang, X. Sheng, Carbon 126 (2018) 247-256. |
[70] | Y. Li, W. Ho, K. Lv, B. Zhu, S.C. Lee, Appl. Surf. Sci. 430(2018) 380-389. |
[71] |
K. Pandiselvi, H. Fang, X. Huang, J. Wang, X. Xu, T. Li, J. Hazard. Mater. 314(2016) 67-77.
DOI URL PMID |
[72] |
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135(2013) 18-21.
URL PMID |
[73] | Y. Si, Z. Sun, L. Huang, M. Chen, L. Wu, J. Mater. Chem. A7 (2019) 8952-8959. |
[74] | M. Wu, Y.S. Gong, T. Nie, J. Zhang, R. Wang, H.W. Wang, B.B. He, J. Mater. Chem. A7 (2019) 5324-5332. |
[75] | J.N. Huang, Y.H. Cao, H.J. Wang, H. Yu, F. Peng, H.B. Zou, Z.L. Liu, Chem. Eng. J. 373(2019) 687-699. |
[76] | B.X. Zhou, S.S. Ding, B.J. Zhang, L. Xu, R.S. Chen, L. Luo, W.Q. Huang, Z. Xie, A. Pan, G.F. Huang, Appl. Catal. B254 (2019) 321-328. |
[77] | S. Zhao, Y. Zhang, J. Fang, H. Zhang, Y. Wang, Y. Zhou, W. Chen, C. Zhang, ACS Sustain. Chem. Eng. 6(2018) 8291-8299. |
[78] | S. Wan, M. Ou, Y. Xiong, Q. Zhong, S. Zhang, J. Mater. Sci. 53(2018) 11315-11328. |
[79] | Y. Shi, J. Huang, G. Zeng, W. Cheng, H. Yu, Y. Gu, L. Shi, K. Yi, J. Colloid Interf. Sci. 531(2018) 433-443. |
[80] | S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Edit. 55(2016) 1830-1834. |
[81] | X. Fu, X. Hu, Z. Yan, K. Lei, F. Li, F. Cheng, J. Chen, Chem. Commun. 52(2016) 1725-1728. |
[82] | M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov, J.R. García, L. Palmisano, Appl. Catal. B220 (2018) 222-233. |
[83] | G. Ge, Z. Zhao, Catal. Sci. Technol. 9(2019) 266-270. |
[84] | C. Yang, S. Zhang, Y. Huang, K. Lv, S. Fang, X. Wu, Q. Li, J. Fan, Appl. Surf. Sci. 505(2020), 144654. |
[85] | J. Xu, L. Zhang, R. Shi, Y. Zhu, J. Mater. Chem. A1 (2013) 14766-14772. |
[86] | P. Yang, H. Ou, Y. Fang, X. Wang, Angew. Chem. Int. Edit. 56(2017) 3992-3996. |
[87] |
N. Meng, J. Ren, Y. Liu, Y. Huang, T. Petit, B. Zhang, Energy Environ. Sci. 11(2018) 566-571.
DOI URL |
[88] | S. Dou, L. Tao, R. Wang, S. El Hankari, R. Chen, S. Wang, Adv. Mater. 30(2018), 1705850. |
[89] | Y. Chen, H. Wang, C.-J. Liu, Z. Zeng, H. Zhang, C. Zhou, X. Jia, Y. Yang, J. Catal. 289(2012) 105-117. |
[90] | Z.Y. Mao, J.J. Chen, Y.F. Yang, L.J. Bie, B.D. Fahlman, D.J. Wang, Carbon 123(2017) 651-659. |
[91] |
X.M. Bu, J.P. Li, S.W. Yang, J. Sun, Y. Deng, Y.C. Yang, G. Wang, Z. Peng, P. He, X.Y. Wang, G.Q. Ding, J.H. Yang, X.M. Xie, ACS Appl. Mater. Interfaces 8(2016) 31419-31425.
DOI URL PMID |
[92] | Q. Xiang, F. Li, D. Zhang, Y. Liao, H. Zhou, Appl. Surf. Sci. 495(2019), 143520. |
[93] |
M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, J. Mater. Sci. Technol. (2020). http://dx.doi.org/10.1016/j.jmst.2020.01.054.
DOI URL PMID |
[94] | Y. Li, Z. Jin, L. Zhang, K. Fan, Chin. J. Catal. 40(2019) 390-402. |
[95] | Y. Zheng, Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, X. Tang, Y. Zhang, Y. Zhao, J. Mater. Sci. Technol. 41(2020) 117-126. |
[96] | W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B219 (2017) 693-704. |
[97] | Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Sol. RRL 2(2018), 1800006. |
[98] |
P.F. Xia, S.W. Cao, B.C. Zhu, M.J. Liu, M.S. Shi, J.G. Yu, Y.F. Zhang, Angew. Chem. Int. Edit. 59(2020) 5218-5225.
DOI URL |
[99] |
T. Tong, B.C. Zhu, C.J. Jiang, B. Cheng, J.G. Yu, Appl. Surf. Sci. 433(2018) 1175-1183.
DOI URL |
[100] | M. Mousavi, A. Habibi-Yangjeh, D. Seifzadeh, J. Mater. Sci. Technol. 34(2018) 1638-1651. |
[101] | M.G. Kim, W.K. Jo, J. Mater. Sci. Technol. 40(2020) 168-175. |
[102] | E.X. Han, Y.Y. Li, Q.H. Wang, W.Q. Huang, L. Luo, W. Hu, G.F. Huang, J. Mater. Sci. Technol. 35(2019) 2288-2296. |
[103] | V. Balakumar, H. Kim, J.W. Ryu, R. Manivannan, Y.A. Son, J. Mater. Sci. Technol. 40(2020) 176-184. |
[104] | R. Hu, X. Wang, S. Dai, D. Shao, T. Hayat, A. Alsaedi, Chem. Eng. J. 260(2015) 469-477. |
[105] |
Y. Zhou, C. Liao, Y. Fan, S. Ma, M. Su, Z. Zhou, T.S. Chan, Y.R. Lu, K. Shih, Environ. Sci. Nano 6 (2019) 3324-3335.
DOI URL |
[106] | W. Guo, K. Fan, J. Zhang, C. Xu, Appl. Surf. Sci. 447(2018) 125-134. |
[107] | J. Zhang, J. Fu, Z. Wang, B. Cheng, K. Dai, W. Ho, J. Alloys. Compd. 766(2018) 841-850. |
[108] | Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, Appl. Catal. B241 (2019) 528-538. |
[109] | Q. Liang, J. Jin, M. Zhang, C. Liu, S. Xu, C. Yao, Z. Li, Appl. Catal. B218 (2017) 545-554. |
[110] | J. Xu, F. Wu, Q. Jiang, J.K. Shang, Y.X. Li, J. Mol, Catal. A-Chem 403 (2015) 77-83. |
[111] |
C. Cometto, R. Kuriki, L. Chen, K. Maeda, T.-C. Lau, O. Ishitani, M. Robert, J. Am. Chem. Soc. 140(2018) 7437-7440.
URL PMID |
[112] |
M.F. Kuehnel, K.L. Orchard, K.E. Dalle, E. Reisner, J. Am. Chem. Soc. 139(2017) 7217-7223.
DOI URL |
[113] | M. Zhou, S. Wang, P. Yang, C. Huang, X. Wang, ACS Catal. 8(2018) 4928-4936. |
[114] |
Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, L.J. Smith, D. O’Hare, T. Zhang, Adv. Mater. 27(2015) 7824-7831.
URL PMID |
[115] | S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28(2018), 1800136. |
[116] | X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9(2016) 2177-2196. |
[117] | S. Guo, H. Zhang, P. Yang, Y. Chen, X. Yu, B. Yu, Y. Zhao, Z. Yang, Z. Liu, Catal. Sci. Technol. 9(2019) 2485-2492. |
[118] | L. Yang, J. Huang, L. Shi, L. Cao, H. Liu, Y. Liu, Y. Li, H. Song, Y. Jie, J. Ye, Appl. Catal. B221 (2018) 670-680. |
[119] | Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti, Joule 3(2019) 2792-2805. |
[120] | M. Carmo, D.L. Fritz, J. Merge, D. Stolten, Int. J. Hydrog. Energy 38 (2013) 4901-4934. |
[121] | J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang, H. Pan, S.X. Dou, W. Sun, Angew. Chem. Int. Edit. 58(2019) 12540-12544. |
[122] | L. Wang, G. Zhou, Y. Tian, L. Yan, M. Deng, B. Yang, Z. Kang, H. Sun, Appl. Catal. B244 (2019) 262-271. |
[123] |
J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8(2018), 1701503.
DOI URL |
[124] | Z. Jin, L. Zhang, J. Mater. Sci. Technol. 49(2020) 144-156. |
[125] | X. Li, J. Xiong, X. Gao, J. Huang, Z. Feng, Z. Chen, Y. Zhu, J. Alloys. Compd. 802(2019) 196-209. |
[126] | Y. Li, D. Zhang, X. Feng, Q. Xiang, Chin. J. Catal. 41(2020) 21-30. |
[127] | J. Liu, B. Cheng, Appl. Surf. Sci. 430(2018) 348-354. |
[128] | Y. Ren, D. Zeng, W.J. Ong, Chin. J. Catal. 40(2019) 289-319. |
[129] | P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Adv. Funct. Mater. 29(2019), 1900093. |
[130] | B. Zhu, L. Zhang, B. Cheng, J. Yu, Appl. Catal. B224 (2018) 983-999. |
[131] |
Y. Kang, Y. Yang, L.C. Yin, X. Kang, L. Wang, G. Liu, H.M. Cheng, Adv. Mater. 28(2016) 6471-6472.
DOI URL PMID |
[132] | H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Adv. Mater. 29(2017), 1700008. |
[133] | X. Li, J. Xing, C. Zhang, B. Han, Y. Zhang, T. Wen, R. Leng, Z. Jiang, Y. Ai, X. Wang, ACS Sustain. Chem. Eng. 6(2018) 10606-10615. |
[134] | M. Jourshabani, Z. Shariatinia, A. Badiei, J. Mater. Sci. Technol. 34(2018) 1511-1525. |
[135] | Q. Yan, G.F. Huang, D.F. Li, M. Zhang, A.L. Pan, W.Q. Huang, J. Mater. Sci. Technol. 34(2018) 2515-2520. |
[136] | Y. Zhu, C. Xiong, S. Song, Z. Le, S. Jiang, J. Colloid Interf. Sci. 538(2019) 237-247. |
[137] |
N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, L. Ge, G. Lu, Chin. J. Catal. 40(2019) 352-361.
DOI URL |
[138] |
K. Sun, J. Shen, Q. Liu, H. Tang, M. Zhang, S. Zulfiqar, C. Lei, Chin. J. Catal. 41(2020) 72-81.
DOI URL |
[139] | F. Mei, Z. Li, K. Dai, J. Zhang, C. Liang, Chin. J. Catal. 41(2020) 41-49. |
[140] |
X. Li, J. Xiong, Y. Xu, Z. Feng, J. Huang, Chin. J. Catal. 40(2019) 424-433.
DOI URL |
[141] | Y. Chen, F. Ding, A. Khaing, D. Yang, Z. Jiang, Appl. Surf. Sci. 479(2019) 757-764. |
[142] |
A. Zhu, L. Qiao, Z. Jia, P. Tan, Y. Liu, Y. Ma, J. Pan, Dalton Trans. 46(2017) 17032-17040.
DOI URL PMID |
[143] | S. Wu, S. Wen, X. Xu, G. Huang, Y. Cui, J. Li, A. Qu, Appl. Surf. Sci. 436(2018) 424-432. |
[144] |
W. Liu, Y. Li, F. Liu, W. Jiang, D. Zhang, J. Liang, Water Res. 151(2019) 8-19.
DOI URL PMID |
[145] | F. Hu, W. Luo, Y. Hu, H. Dai, X. Peng, J. Alloys. Compd. 794(2019) 594-605. |
[146] |
M. Baca, W. Kukulka, K. Cendrowski, E. Mijowska, R.J. Kalenczuk, B. Zielinska, ChemSusChem 12 (2019) 612-620.
URL PMID |
[147] | G.F. Liao, Y. Gong, L. Zhang, H.Y. Gao, G.J. Yang, B.Z. Fang, Energy Environ. Sci. 12(2019) 2080-2147. |
[148] | Y. Zhao, J. Zhang, L.T. Qu, ChemNanoMat 1 (2015) 298-318. |
[149] | Y. Wang, X.C. Wang, M. Antonietti, Angew. Chem. Int. Edit. 51(2012) 68-89. |
[150] |
C. Lu, Y. Yang, X. Chen, Nano Lett. 19(2019) 4103-4111.
DOI URL PMID |
[151] | B. Chong, L. Chen, D. Han, L. Wang, L. Feng, Q. Li, C. Li, W. Wang, Chin. J. Catal. 40(2019) 959-968. |
[152] |
Q. Yan, C. Zhao, L. Zhang, Y. Hou, S. Wang, P. Dong, F. Lin, Y. Wang, ACS Sustain. Chem. Eng. 7(2019) 3866-3874.
DOI URL |
[153] | K. Zhang, L. Wang, X. Sheng, M. Ma, M.S. Jung, W. Kim, H. Lee, J.H. Park, Adv. Energy Mater. 6(2016), 1502352. |
[154] |
H.J. Li, D.J. Qian, M. Chen, ACS Appl. Mater. Interfaces 7 (2015) 25162-25170.
DOI URL PMID |
[155] | Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Edit. 51(2012) 11814-11818. |
[156] | Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 6(2016), 1601273. |
[157] | J. Jia, E.R. White, A.J. Clancy, N. Rubio, T. Suter, T.S. Miller, K. McColl, P.F. McMillan, V. Brazdova, F. Cora, C.A. Howard, R.V. Law, C. Mattevi, M.S.P. Shaffer, Angew. Chem. Int. Edit. 57(2018) 12656-12660. |
[158] |
K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, J. Am. Chem. Soc. 136(2014) 1730-1733.
DOI URL PMID |
[159] | W. Chen, S.C. Wu, Z.J. Xia, G.B. Huang, J. Hu, J. Alloys. Compd. 809(2019), 151859. |
[160] | W. Iqbal, B. Qiu, Q. Zhu, M. Xing, J. Zhang, Appl. Catal. B232 (2018) 306-313. |
[161] |
H.J. Li, B.W. Sun, L. Sui, D.J. Qian, M. Chen, Phys. Chem. Chem. Phys. 17(2015) 3309-3315.
DOI URL PMID |
[162] | Y. Li, Z. Ruan, Y. He, J. Li, K. Li, Y. Jiang, X. Xu, Y. Yuan, K. Lin, Appl. Catal. B236 (2018) 64-75. |
[163] | X. She, L. Liu, H. Ji, Z. Mo, Y. Li, L. Huang, D. Du, H. Xu, H. Li, Appl. Catal. B187(2016) 144-153. |
[164] | Z.W. Huang, Y.W. Zhang, H.Y. Dai, Y.Y. Wang, C.C. Qin, W.X. Chen, Y.M. Zhou, S.H. Yuan, J. Catal. 378(2019) 331-340. |
[165] |
Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao, H. Fu, J. Am. Chem. Soc. 141(2019) 2508-2515.
URL PMID |
[166] |
S. Liu, C. Liu, W. Wang, B. Cheng, J. Yu, Nanoscale 4 (2012) 3193-3200.
URL PMID |
[167] | H. Yu, W. Chen, X. Wang, Y. Xu, J. Yu, Appl. Catal. B187 (2016) 163-170. |
[168] | H. Yu, W. Zhong, X. Huang, P. Wang, J. Yu, ACS Sustain. Chem. Eng. 6(2018) 5513-5523. |
[169] | X.H. Wu, X.F. Wang, F.Z. Wang, H.G. Yu, Appl. Catal. B247 (2019) 70-77. |
[170] | H. Tan, X. Gu, P. Kong, Z. Lian, B. Li, Z. Zheng, Appl. Catal. B242 (2019) 67-75. |
[171] | B.C. Zhu, J.F. Zhang, C.J. Jiang, B. Cheng, J.G. Yu, Appl. Catal. B207 (2017) 27-34. |
[172] | Y. Zou, X. Wang, Y. Ai, Y. Liu, Y. Ji, H. Wang, T. Hayat, A. Alsaedi, W. Hu, X. Wang, J. Mater. Chem. A4 (2016) 14170-14179. |
[173] |
Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc. 132(2010) 6294-6295.
DOI URL PMID |
[174] | J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Energy Environ. Sci. 4(2011) 675-678. |
[175] | J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Edit. 51(2012) 11496-11500. |
[176] |
W.D. Oh, C.Z. Ng, S.L. Ng, J.W. Lim, K.H. Leong, Sep. Purif. Technol. 230(2020), 115852.
DOI URL |
[177] |
L. Cheng, X. Li, H. Zhang, Q. Xiang, J. Phys. Chem. Lett. 10(2019) 3488-3494.
DOI URL PMID |
[178] |
Z. Li, Y. Ma, X. Hu, E. Liu, J. Fan, Chin. J. Catal. 40(2019) 434-445.
DOI URL |
[179] | Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou, W. Ho, Appl. Catal. B25 (2019), 117770. |
[180] |
Y. Yang, D. Zhang, Q. Xiang, Nanoscale 11 (2019) 18797-18805.
DOI URL PMID |
[181] |
J. Luo, Z. Lin, Y. Zhao, S. Jiang, S. Song, Chin. J. Catal. 41(2020) 122-130.
DOI URL |
[182] | L. Cheng, D. Zhang, J. Fan, Y. Liao, Q. Xiang, Appl. Catal.A-General 59 (2020), 117336. |
[183] |
P.W. Chen, K. Li, Y.X. Yu, W.D. Zhang, Appl. Surf. Sci. 392(2017) 608-615.
DOI URL |
[184] | Z. Chen, T.T. Fan, X. Yu, Q.L. Wu, Q.H. Zhu, L.Z. Zhang, J.H. Li, W.P. Fang, X.D. Yi, J. Mater. Chem. A6 (2018) 15310-15319. |
[185] |
P. Hu, C.J. Chen, R. Zeng, J.W. Xiang, Y. Huang, D.F. Hou, Q. Li, Y.H. Huang, Nano Energy 50 (2018) 376-382.
DOI URL |
[186] |
L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci. 11(2018) 1362-1391.
DOI URL |
[187] |
Y. Xia, J.G. Yu, Chem (2020). http://dx.doi.org/10.1016/j.chempr.2020.02.15.
DOI URL PMID |
[188] | A.Y. Meng, L.Y. Zhang, B. Cheng, J.G. Yu, Adv. Mater. 31(2019), 1807660. |
[189] |
F.A. Chowdhury, M.L. Trudeau, H. Guo, Z. Mi, Nat. Commun. 9(2018) 1707.
DOI URL PMID |
[190] |
Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao, Chem. Rev. 119(2018) 1806-1854.
DOI URL PMID |
[191] |
G. Gao, Y. Jiao, E.R. Waclawik, A. Du, J. Am. Chem. Soc. 138(2016) 6292-6297.
DOI URL PMID |
[192] |
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.K. Sham, L.M. Liu, G.A. Botton, X. Sun, Nat. Commun. 7(2016) 13638.
DOI URL PMID |
[193] |
S. An, G. Zhang, T. Wang, W. Zhang, K. Li, C. Song, J.T. Miller, S. Miao, J. Wang, X. Guo, ACS Nano 12 (2018) 9441-9450.
URL PMID |
[194] | J. He, S.Y. Ma, P. Zhou, C.X. Zhang, C. He, L.Z. Sun, J. Phys. Chem. C116 (2012) 26313-26321. |
[195] | X.P. Han, W. Zhang, X.Y. Ma, C. Zhong, N.Q. Zhao, W.B. Hu, Y.D. Deng, Adv. Mater.(2019), 1808281. |
[196] | W. Cui, L. Chen, J. Sheng, J. Li, H. Wang, Xa. Dong, Y. Zhou, Y. Sun, F. Dong, Appl. Catal. B26 (2020), 118251. |
[197] | K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal. B176 (2015) 44-52. |
[198] |
J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15(2013) 16883-16890.
DOI URL PMID |
[199] |
Y. Zheng, J. Liu, B. Cheng, W. You, W. Ho, H. Tang, Appl. Surf. Sci. 473(2019) 251-260.
DOI URL |
[200] |
F. Li, H. Zhou, J. Fan, Q. Xiang, J. Colloid Interf. Sci. 570(2020) 11-19.
DOI URL |
[201] |
X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 119(2019) 3962-4179.
DOI URL PMID |
[202] |
P.F. Xia, B. Cheng, J.Z. Jiang, H. Tang, Appl. Surf. Sci. 487(2019) 335-342.
DOI URL |
[203] | W. Yu, D. Xu, T. Peng, J. Mater. Chem. A3 (2015) 19936-19947. |
[204] |
J. Xu, Z. Wang, Y. Zhu, J. Mater. Sci. Technol. 49(2020) 133-143.
DOI URL |
[205] |
H. Xu, L. Wu, L. Jin, K. Wu, J. Mater. Sci. Technol. 33(2017) 30-38.
DOI URL |
[206] | J. Chen, S. Shen, P. Guo, P. Wu, L. Guo, J. Mater. Chem. A2 (2014) 4605-4612. |
[207] |
S.M. Aspera, M. David, H. Kasai, Jpn. J. Appl. Phys. 49(2010), 115703.
DOI URL |
[208] |
S.M. Aspera, H. Kasai, H. Kawai, Surf. Sci. 606(2012) 892-901.
DOI URL |
[209] |
H.Z. Wu, L.M. Liu, S.J. Zhao, Phys. Chem. Chem. Phys. 16(2014) 3299-3304.
URL PMID |
[210] |
H. Wu, L. Liu, S. Zhao, Appl. Surf. Sci. 358(2015) 363-369.
DOI URL |
[211] | B. Zhu, L. Zhang, D. Xu, B. Cheng, J. Yu, J. CO2Util. 21(2017) 327-335. |
[212] |
Y. Ji, H. Dong, H. Lin, L. Zhang, T. Hou, Y. Li, RSC Adv. 6(2016) 52377-52383.
DOI URL |
[213] |
H.Z. Wu, S. Bandaruc, J. Liu, L.L. Li, Z.L. Wang, Appl. Surf. Sci. 430(2018) 125-136.
DOI URL |
[214] |
J. Li, D.D. Wu, J. Iocozzia, H.W. Du, X.Q. Liu, Y.P. Yuan, W. Zhou, Z. Li, Z.M. Xue, Z.Q. Lin, Angew. Chem. Int. Edit. 58(2019) 1-6.
DOI URL |
[1] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
[2] | Emese Lantos, László Mérai, Ágota Deák, Juan Gómez-Pérez, Dániel Sebők, Imre Dékány, Zoltán Kónya, László Janovák. Preparation of sulfur hydrophobized plasmonic photocatalyst towards durable superhydrophobic coating material [J]. J. Mater. Sci. Technol., 2020, 41(0): 159-167. |
[3] | Mir Ghasem Hosseini, Pariya Yardani Sefidi, Ahmet Musap Mert, Solen Kinayyigit. Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sulfonic acid doped polyaniline -WO3- MWCNT ternary nanocomposite [J]. J. Mater. Sci. Technol., 2020, 38(0): 7-18. |
[4] | Yingzhi Chen, Dongjian Jiang, Zhengqi Gong, Qinglin Li, Ranran Shi, Zexi Yang, Ziyi Lei, Jingyuan Li, Lu-Ning Wang. Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation [J]. J. Mater. Sci. Technol., 2020, 38(0): 93-106. |
[5] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[6] | Zhongfu Li, Zhaohui Wu, Rongan He, Long Wan, Shiying Zhang. In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 56(0): 151-161. |
[7] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[8] | Xintong Liu, Shaonan Gu, Yanjun Zhao, Guowei Zhou, Wenjun Li. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review [J]. J. Mater. Sci. Technol., 2020, 56(0): 45-68. |
[9] | Shuang Gao, Weiyi Yang, Jun Xiao, Bo Li, Qi Li. Creation of passivated Nb/N p-n co-doped ZnO nanoparticles and their enhanced photocatalytic performance under visible light illumination [J]. J. Mater. Sci. Technol., 2019, 35(4): 610-614. |
[10] | Huaqiang Zhuang, Wentao Xu, Liqin Lin, Mianli Huang, Miaoqiong Xu, Shaoyun Chen, Zhenping Cai. Construction of one dimensional ZnWO4@SnWO4 core-shell heterostructure for boosted photocatalytic performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2312-2318. |
[11] | Mitra Mousavi, Aziz Habibi-Yangjeh, Davod Seifzadeh. Novel ternary g-C3N4/Fe3O4/MnWO4 nanocomposites: Synthesis, characterization, and visible-light photocatalytic performance for environmental purposes [J]. J. Mater. Sci. Technol., 2018, 34(9): 1638-1651. |
[12] | Milad Jourshabani, Zahra Shariatinia, Alireza Badiei. High efficiency visible-light-driven Fe2O3-xSx/S-doped g-C3N4 heterojunction photocatalysts: Direct Z-scheme mechanism [J]. J. Mater. Sci. Technol., 2018, 34(9): 1511-1525. |
[13] | Chang Liu, Xiang Zhu, Peng Wang, Yisen Zhao, Yongqing Ma. Defects and interface states related photocatalytic properties in reduced and subsequently nitridized Fe3O4/TiO2 [J]. J. Mater. Sci. Technol., 2018, 34(6): 931-941. |
[14] | Jun Xiao, Weiyi Yang, Shuang Gao, Caixia Sun, Qi Li. Fabrication ofultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination [J]. J. Mater. Sci. Technol., 2018, 34(12): 2331-2336. |
[15] | Qian Yan, Gui-Fang Huang, Dong-Feng Li, Ming Zhang, An-Lian Pan, Wei-Qing Huang. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets [J]. J. Mater. Sci. Technol., 2018, 34(12): 2515-2520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||