Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 133-143    DOI: 10.1016/j.jmst.2020.02.024
Research Article Current Issue | Archive | Adv Search |
Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering
Jing Xua,b,c,d, Zhouping Wanga,b,c,d,*(), Yongfa Zhue,**()
a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
c International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
d Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
e Department of Chemistry, Tsinghua University, Beijing 100084, China
Download:  HTML  PDF(5290KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, microtubular nanoporous g-C3N4 (TPCN) with hierarchical structure and nitrogen defects was prepared via a facile self-templating approach. On one hand, the hexagonal tubular structure can facilitate the light reflection/scattering, provide internal/external active sites, and endow the electron with oriented transfer channels. The well-developed nanoporosity can result in large specific surface area and abundant accessible channels for charge migration. On the other hand, the existence of nitrogen vacancies can improve the light harvesting (λ > 450 nm) and prompt charge separation by acting as the shallow charge traps. More NHx groups in g-C3N4 framework can promote the interlayer charge transport by generating hydrogen-bonding interaction between C3N4 layers. Therefore, TPCN possessed highly efficient visible photocatalytic performances to effectively inactivate Escherichia coli (E. coli) cells and thoroughly mineralize organic pollutants. TPCN with the optimum bactericidal efficiency can completely inactivated 5 × 106 cfu mL-1 of E. coli cells after 4 h of irradiation treatment, while about 74.4 % of E. coli cells were killed by bulk g-C3N4 (BCN). Meanwhile, the photodegradation rate of TPCN towards methylene blue, amaranth, and bisphenol A were almost 3.1, 2.5 and 1.6 times as fast as those of BCN. Furthermore, h+ and ?O2- were the reactive species in the photocatalytic process of TPCN system.

Key words:  g-C3N4photocatalyst      Hierarchical structure      Nitrogen defects      Disinfection      Degradation     
Received:  16 December 2019     
Corresponding Authors:  Zhouping Wang,Yongfa Zhu     E-mail:  wangzp@jiangnan.edu.cn;zhuyf@mail.tsinghua.edu.cn

Cite this article: 

Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering. J. Mater. Sci. Technol., 2020, 49(0): 133-143.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.02.024     OR     https://www.jmst.org/EN/Y2020/V49/I0/133

Scheme 1.  Synthetic process of TPCN photocatalyst.
Fig. 1.  SEM images of supramolecular precursor (a, b) and TPCN-5 (c-e), TEM images of TPCN-5 (f-h).
Fig. 2.  (a) N2 adsorption-desorption isotherms and (b) pore size distributions of BCN and TPCN.
Sample BET specific surface area
(m2 g-1)
Pore volume
(cm3 g-1)
BCN 3.4 0.021
TPCN-2 32.8 0.14
TPCN-5 72.3 0.30
TPCN-8 54.7 0.23
Table 1  BET specific surface area and pore volume of BCN and TPCN.
Fig. 3.  (a) XRD patterns and (b) FTIR spectra of BCN and TPCN.
Fig. 4.  (a) UV-vis diffuse reflectance spectra of BCN and TPCN, (b) the schematic band structures of BCN and TPCN-5.
Fig. 5.  (a) C/N atomic ratio of BCN and TPCN from element analysis; ESR spectra (b) and XPS N 1s spectra (c) of BCN and TPCN-5; (d) schematic of TPCN-5 with VN.
Sample N2C N3C NHx N3C/N2C NHx/N3C
BCN 74.02 % 16.93 % 9.05 % 0.229 0.535
TPCN-5 76.48% 13.48 % 10.04 % 0.176 0.745
Table 2  Distribution of N atoms based on XPS N 1s spectra for BCN and TPCN-5.
Fig. 6.  Photocatalytic inactivation efficiency against E. coli under visible light irradiation over BCN and TPCN.
Fig. 7.  Fluorescent images of live and dead E. coli cells exposed to different treatments (light control, dark control, BCN and TPCN under visible light irradiation). Green fluorescence shows both live and dead E. coli cells, and red fluorescence shows only dead E. coli cells.
Fig. 8.  SEM images of E. coli cells (a) alone, (b) mixing with TPCN-5 before irradiation, (c, d) after disinfection for 4 h using TPCN-5.
Fig. 9.  (a) Apparent rate constants for photocatalytic degradation of MB, amaranth and BPA under visible light irradiation over BCN and TPCN-5; (b) cycling runs for photodegradation of MB in presence of TPCN-5 under visible light irradiation.
Fig. 10.  (a) PL spectra of BCN and TPCN under photoexcitation at 365 nm, (b) ns-level time-resolved fluorescence decay spectra of BCN and TPCN monitored under a 375 nm laser excitation.
Sample τ1 (ns)-Rel % τ2 (ns)-Rel % τav (ns)
BCN 1.39-47.33 5.42-52.67 3.51
TPCN-2 1.50-42.07 7.66-57.93 5.07
TPCN-5 1.55-27.33 8.94-72.67 6.92
TPCN-8 2.28-36.66 8.08-63.34 5.95
Table 3  Radiative fluorescence lifetimes of charge carriers for BCN and TPCN samples.
Fig. 11.  (a) Photocurrent responses of BCN and TPCN and (b) EIS Nyquist plots of BCN and TPCN-5 under dark and visible-light conditions.
Fig. 12.  (a) ESR spectra of TPCN-5 in DMSO and H2O under dark and visible-light conditions, (b) photodegradation of amaranth over TPCN-5 in presence of different reactive species scavengers under visible light irradiation.
Scheme 2.  Proposed mechanism for charge transfer and photocatalytic process in TPCN system under visible light irradiation.
[1] W. Wang, J.C. Yu, D. Xia, P.K. Wong, Y. Li, Environ. Sci. Technol. 47 (2013) 8724-8732.
doi: 10.1021/es4013504 pmid: 23859533
[2] C. Pan, Y. Zhu, Environ. Sci. Technol. 44 (2010) 5570-5574.
doi: 10.1021/es101223n pmid: 20578684
[3] J. Xu, L. Wang, Y. Zhu, Langmuir 28 (2012) 8418-8425.
doi: 10.1021/la301476p pmid: 22571829
[4] T.K. Stevik, K. Aa, G. Ausland, J.F. Hanssen, Water Res. 38 (2004) 1355-1367.
doi: 10.1016/j.watres.2003.12.024 pmid: 15016513
[5] M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann, Appl. Catal. B-Environ. 51 (2004) 183-194.
[6] J. Xu, Y.F. Zhu, Acta Phys.-Chim. Sin. 29 (2013) 829-836.
[7] E.B. Azevedo, F.R.D. Neto, M. Dezotti, Appl. Catal. B-Environ. 54 (2004) 165-173.
[8] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
doi: 10.1038/nmat2317 pmid: 18997776
[9] S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397-10401.
doi: 10.1021/la900923z pmid: 19705905
[10] J. Huang, W. Ho, X. Wang, Chem. Commun. (Camb.) 50 (2014) 4338-4340.
doi: 10.1039/c3cc48374f
[11] G.H. Dong, W.K. Ho, C.Y. Wang, J. Mater. Chem. A Mater. Energy Sustain. 3 (2015) 23435-23441.
[12] K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal. B-Environ. 176 (2015) 44-52.
[13] X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, J. Am. Chem. Soc. 131 (2009) 1680-1681.
doi: 10.1021/ja809307s pmid: 19191697
[14] Y. Wang, J.S. Zhang, X.C. Wang, M. Antonietti, H.R. Li, Angew. Chemie Int. Ed. English 49 (2010) 3356-3359.
[15] H. Gao, R. Cao, S. Zhang, H. Yang, X. Xu, ACS Appl. Mater. Interf. 11 (2019) 2050-2059.
[16] J. Wu, N. Li X.-H. Zhang, H.-B. Fang, Y.-Z. Zheng, X. Tao, Appl. Catal. B-Environ. 226 (2018) 61-70.
doi: 10.1016/j.apcatb.2017.12.045
[17] P. Niu, M. Qiao, Y.F. Li, L. Huang, T.Y. Zhai, Nano Energy 44 (2018) 73-81.
[18] Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty A.C.H. Huan, T.C. Sum, R. Ahuja, Z. Chen, Chem. Mat. 27 (2015) 4930-4933.
[19] J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 14766-14772.
[20] X. Bai, L. Wang, R. Zong, Y. Zhu, J. Phys. Chem. C 117 (2013) 9952-9961.
doi: 10.1021/jp402062d
[21] Q. Yan G.-F. Huang, D.-F. Li, M. Zhang, A.-L. Pan, W.-Q. Huang, J. Mater. Sci. Technol. 34 (2018) 2515-2520.
[22] E.-X. Han, Y.-Y. Li, Q.-H. Wang, W.-Q. Huang, L. Luo, W. Hu, G.F. Huang, J. Mater. Sci. Technol. 35 (2019) 2288-2296.
[23] B. Chai, J.T. Yan, C.L. Wang, Z.D. Ren, Y.C. Zhu, Appl. Surf. Sci. 391 (2017) 376-383.
[24] M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, J. Am. Chem. Soc. 139 (2017) 13234-13242.
pmid: 28856885
[25] B. Chai, C. Liu, J.T. Yan, Z.D. Ren, Z.J. Wang, Appl. Surf. Sci. 448 (2018) 1-8.
doi: 10.1016/j.apsusc.2018.04.116
[26] X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal. B-Environ. 147 (2014) 82-91.
doi: 10.1016/j.apcatb.2013.08.007
[27] J. Xu, Q. Gao, X. Bai, Z. Wang, Y. Zhu, Catal. Today 332 (2019) 227-235.
[28] Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S.S. Park, C.-S. Ha, D Zhao, Nano Res. 3 (2010) 632-642.
[29] M. Tahir, C.B. Cao, F.K. Butt, F. Idrees, N. Mahmood, Z. Ali, I. Aslam, M. Tanveer, M. Rizwan, T. Mahmood, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 13949-13955.
[30] Z.W. Tong, D. Yang, Y.Y. Sun, Y.H. Nan, Z.Y. Jiang, Small 12 (2016) 4093-4101.
doi: 10.1002/smll.201601660 pmid: 27348710
[31] J. Xu, Y. Wang, Y. Zhu, Langmuir 29 (2013) 10566-10572.
doi: 10.1021/la402268u pmid: 23888983
[32] J. Hong, S. Yin, Y. Pan, J. Han, T. Zhou, R. Xu, Nanoscale 6 (2014) 14984-14990.
doi: 10.1039/c4nr05341a pmid: 25362966
[33] R.R. Zhao, J.P. Gao, S.K. Mei, Y.L. Wu, X.X. Wang, X.G. Zhai, J.B. Yang, C.Y. Hao, J. Yan, Nanotechnology 2 (2017), 495710.
[34] Q.H. Liang, Z. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885-6892.
[35] W.G. Tu, Y. Xu, J.J. Wang, B.W. Zhang, T.H. Zhou, S.M. Yin, S.Y. Wu, C.M. Li, Y.Z. Huang, Y. Zhou, Z.G. Zou, J. Robertson, M. Kraft, R. Xu, ACS Sustainable Chem. Eng. 5 (2017) 7260-7268.
[36] H. Yan, Chem. Commun. (Camb.) 48 (2012) 3430-3432.
doi: 10.1039/c2cc00001f
[37] G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon, K. Al-Bahily, T. Mori, D.H. Park, A. Vinu, Angew. Chemie Int. Ed. English 56 (2017) 8481-8485.
[38] M. Zhang, J. Xu, R. Zong, Y. Zhu, Appl. Catal. B-Environ. 147 (2014) 229-235.
doi: 10.1016/j.apcatb.2013.09.002
[39] J. Xu, Z.P. Wang, Y.F. Zhu, ACS Appl. Mater. Interf. 9 (2017) 27727-27735.
doi: 10.1021/acsami.7b07657
[40] S.E. Guo, Z.P. Deng, M.X. Li, B.J. Jiang, C.G. Tian, Q.J. Pan, H.G. Fu, Angew. Chemie Int. Ed. English 55 (2016) 1830-1834.
[41] S.E. Guo, Y.Q. Tang, Y. Xie, C.G. Tian, Q.M. Feng, W. Zhou, B.J. Jiang, Appl. Catal. B- Environ. 218 (2017) 664-671.
doi: 10.1016/j.apcatb.2017.07.022
[42] Z. Mo, H. Xu, Z.G. Chen, X.J. She, Y.H. Song, J.J. Wu, P.C. Yan, L. Xu, Y.C. Leia, S.Q. Yuan, H.M. Li, Appl. Catal. B-Environ. 225 (2018) 154-161.
doi: 10.1016/j.apcatb.2017.11.041
[43] Y.B. Wang, X. Zhao, D. Cao, Y. Wang, Y.F. Zhu, Appl. Catal. B-Environ. 211 (2017) 79-88.
doi: 10.1016/j.apcatb.2017.03.079
[44] X. Qu, S. Hu, J. Bai, P. Li, G. Lu, X. Kang, J. Mater. Sci. Technol. 34 (2018) 1932-1938.
doi: 10.1016/j.jmst.2018.04.019
[45] H.J. Yu, R. Shi, Y.X. Zhao, T. Bian, Y.F. Zhao, C. Zhou G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Mater. 29 (2017), 1605148.
doi: 10.1002/adma.201605148
[46] P.F. Xia, B. Cheng, J.Z. Jiang, H. Tang, Appl. Surf. Sci. 487 (2019) 335-342.
doi: 10.1016/j.apsusc.2019.05.064
[47] J. Ding, W. Xu, H. Wan, D.S. Yuan, C. Chen, L. Wang, G.F. Guan, W.L. Dai, Appl. Catal. B-Environ. 221 (2018) 626-634.
doi: 10.1016/j.apcatb.2017.09.048
[48] J. Xu, M. Fujitsuka, S. Kim, Z. Wang, T. Majima, Appl. Catal. B-Environ. 241 (2019) 141-148.
doi: 10.1016/j.apcatb.2018.09.023
[49] R. Wang, X. Kong, W. Zhang, W. Zhu, L. Huang, J. Wang, X. Zhang, X. Liu, N. Hu, Y. Suo, J. Wang, Appl. Catal. B-Environ. 225 (2018) 228-237.
doi: 10.1016/j.apcatb.2017.11.060
[50] S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Appl. Catal. B-Environ. 186 (2016) 77-87.
doi: 10.1016/j.apcatb.2015.12.051
[1] Shanshan Chen, Bin Zhang, Bin Zhanggchun, Hao Lin, Hui Yang, Feng Zheng, Ming Chen, Ke Yang. Assessment of structure integrity, corrosion behavior and microstructure change of AZ31B stent in porcine coronary arteries[J]. 材料科学与技术, 2020, 39(0): 39-47.
[2] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[3] Bowen Zhao, Zhengwang Zhu, Xin Dong Qin, Zhengkun Li, Haifeng Zhang. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation[J]. 材料科学与技术, 2020, 46(0): 88-97.
[4] Madhusudhan Alle, Seung-Hwan Lee, Jin-Chul Kim. Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity[J]. 材料科学与技术, 2020, 41(0): 168-177.
[5] Paulina Kazimierczak, Aleksandra Benko, Krzysztof Palka, Cristina Canal, Dorota Kolodynska, Agata Przekora. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds[J]. 材料科学与技术, 2020, 43(0): 52-63.
[6] Xingzhou Li, Jili Wu, Ye Pan. Preparation of nanostructured Cu/Zr metal mixed oxides via self-sustained oxidation of a CuZr binary amorphous alloy[J]. 材料科学与技术, 2019, 35(8): 1601-1606.
[7] Youliang Cheng, Mengsha Bai, Jian Su, Changqing Fang, Hang Li, Jing Chen, Jieming Jiao. Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic degradation activity of organic dyes[J]. 材料科学与技术, 2019, 35(8): 1515-1522.
[8] Zhenquan Shen, Ming Zhao, Dong Bian, Danni Shen, Xiaochen Zhou, Jianing Liu, Yang Liu, Hui Guo, Yufeng Zheng. Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing[J]. 材料科学与技术, 2019, 35(7): 1393-1402.
[9] Wen Zhang, Lili Tan, Dingrui Ni, Junxiu Chen, Ying-Chao Zhao, Long Liu, Cijun Shuai, Ke Yang, Andrej Atrens, Ming-Chun Zhao. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy[J]. 材料科学与技术, 2019, 35(5): 777-783.
[10] Junxiu Chen, Lili Tan, Xiaoming Yu, Ke Yang. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys[J]. 材料科学与技术, 2019, 35(4): 503-511.
[11] Ming-Shi Song, Rong-Chang Zeng, Yun-Fei Ding, Rachel W. Li, Mark Easton, Ivan Cole, Nick Birbilis, Xiao-Bo Chen. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review[J]. 材料科学与技术, 2019, 35(4): 535-544.
[12] Guangrong Li, Guanjun Yang. Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure[J]. 材料科学与技术, 2019, 35(3): 231-238.
[13] Zheng Wang, Qingke Zhang, Robabeh Bagheri, Pushan Guo, Yirong Yao, Lijing Yang, Zhenlun Song. Influence of laser surface remelting on microstructure and degradation mechanism in simulated body fluid of Zn-0.5Zr alloy[J]. 材料科学与技术, 2019, 35(11): 2705-2713.
[14] Junxiu Chen, Jiahui Dong, Huameng Fu, Haifeng Zhang, Lili Tan, Dewei Zhao, Ke Yang. In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect[J]. 材料科学与技术, 2019, 35(10): 2254-2262.
[15] Er-Xun Han, Yuan-Yuan Li, Qi-Hao Wang, Wei-Qing Huang, Leng Luo, Wangyu Hu, Gui-Fang Huang. Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition[J]. 材料科学与技术, 2019, 35(10): 2288-2296.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.