J. Mater. Sci. Technol. ›› 2020, Vol. 49: 133-143.DOI: 10.1016/j.jmst.2020.02.024
• Research Article • Previous Articles Next Articles
Jing Xua,b,c,d, Zhouping Wanga,b,c,d,*(), Yongfa Zhue,**(
)
Received:
2019-12-16
Revised:
2020-01-09
Accepted:
2020-01-11
Published:
2020-07-15
Online:
2020-07-17
Contact:
Zhouping Wang,Yongfa Zhu
Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering[J]. J. Mater. Sci. Technol., 2020, 49: 133-143.
Sample | BET specific surface area (m2 g-1) | Pore volume (cm3 g-1) |
---|---|---|
BCN | 3.4 | 0.021 |
TPCN-2 | 32.8 | 0.14 |
TPCN-5 | 72.3 | 0.30 |
TPCN-8 | 54.7 | 0.23 |
Table 1 BET specific surface area and pore volume of BCN and TPCN.
Sample | BET specific surface area (m2 g-1) | Pore volume (cm3 g-1) |
---|---|---|
BCN | 3.4 | 0.021 |
TPCN-2 | 32.8 | 0.14 |
TPCN-5 | 72.3 | 0.30 |
TPCN-8 | 54.7 | 0.23 |
Fig. 5. (a) C/N atomic ratio of BCN and TPCN from element analysis; ESR spectra (b) and XPS N 1s spectra (c) of BCN and TPCN-5; (d) schematic of TPCN-5 with VN.
Sample | N2C | N3C | NHx | N3C/N2C | NHx/N3C |
---|---|---|---|---|---|
BCN | 74.02 % | 16.93 % | 9.05 % | 0.229 | 0.535 |
TPCN-5 | 76.48% | 13.48 % | 10.04 % | 0.176 | 0.745 |
Table 2 Distribution of N atoms based on XPS N 1s spectra for BCN and TPCN-5.
Sample | N2C | N3C | NHx | N3C/N2C | NHx/N3C |
---|---|---|---|---|---|
BCN | 74.02 % | 16.93 % | 9.05 % | 0.229 | 0.535 |
TPCN-5 | 76.48% | 13.48 % | 10.04 % | 0.176 | 0.745 |
Fig. 7. Fluorescent images of live and dead E. coli cells exposed to different treatments (light control, dark control, BCN and TPCN under visible light irradiation). Green fluorescence shows both live and dead E. coli cells, and red fluorescence shows only dead E. coli cells.
Fig. 9. (a) Apparent rate constants for photocatalytic degradation of MB, amaranth and BPA under visible light irradiation over BCN and TPCN-5; (b) cycling runs for photodegradation of MB in presence of TPCN-5 under visible light irradiation.
Fig. 10. (a) PL spectra of BCN and TPCN under photoexcitation at 365 nm, (b) ns-level time-resolved fluorescence decay spectra of BCN and TPCN monitored under a 375 nm laser excitation.
Sample | τ1 (ns)-Rel % | τ2 (ns)-Rel % | τav (ns) |
---|---|---|---|
BCN | 1.39-47.33 | 5.42-52.67 | 3.51 |
TPCN-2 | 1.50-42.07 | 7.66-57.93 | 5.07 |
TPCN-5 | 1.55-27.33 | 8.94-72.67 | 6.92 |
TPCN-8 | 2.28-36.66 | 8.08-63.34 | 5.95 |
Table 3 Radiative fluorescence lifetimes of charge carriers for BCN and TPCN samples.
Sample | τ1 (ns)-Rel % | τ2 (ns)-Rel % | τav (ns) |
---|---|---|---|
BCN | 1.39-47.33 | 5.42-52.67 | 3.51 |
TPCN-2 | 1.50-42.07 | 7.66-57.93 | 5.07 |
TPCN-5 | 1.55-27.33 | 8.94-72.67 | 6.92 |
TPCN-8 | 2.28-36.66 | 8.08-63.34 | 5.95 |
Fig. 12. (a) ESR spectra of TPCN-5 in DMSO and H2O under dark and visible-light conditions, (b) photodegradation of amaranth over TPCN-5 in presence of different reactive species scavengers under visible light irradiation.
[1] |
W. Wang, J.C. Yu, D. Xia, P.K. Wong, Y. Li, Environ. Sci. Technol. 47 (2013) 8724-8732.
DOI URL PMID |
[2] |
C. Pan, Y. Zhu, Environ. Sci. Technol. 44 (2010) 5570-5574.
DOI URL PMID |
[3] |
J. Xu, L. Wang, Y. Zhu, Langmuir 28 (2012) 8418-8425.
DOI URL PMID |
[4] |
T.K. Stevik, K. Aa, G. Ausland, J.F. Hanssen, Water Res. 38 (2004) 1355-1367.
DOI URL PMID |
[5] | M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann, Appl. Catal. B-Environ. 51 (2004) 183-194. |
[6] | J. Xu, Y.F. Zhu, Acta Phys.-Chim. Sin. 29 (2013) 829-836. |
[7] | E.B. Azevedo, F.R.D. Neto, M. Dezotti, Appl. Catal. B-Environ. 54 (2004) 165-173. |
[8] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL PMID |
[9] |
S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397-10401.
DOI URL PMID |
[10] |
J. Huang, W. Ho, X. Wang, Chem. Commun. (Camb.) 50 (2014) 4338-4340.
DOI URL |
[11] | G.H. Dong, W.K. Ho, C.Y. Wang, J. Mater. Chem. A Mater. Energy Sustain. 3 (2015) 23435-23441. |
[12] | K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal. B-Environ. 176 (2015) 44-52. |
[13] |
X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, J. Am. Chem. Soc. 131 (2009) 1680-1681.
DOI URL PMID |
[14] | Y. Wang, J.S. Zhang, X.C. Wang, M. Antonietti, H.R. Li, Angew. Chemie Int. Ed. English 49 (2010) 3356-3359. |
[15] | H. Gao, R. Cao, S. Zhang, H. Yang, X. Xu, ACS Appl. Mater. Interf. 11 (2019) 2050-2059. |
[16] |
J. Wu, N. Li X.-H. Zhang, H.-B. Fang, Y.-Z. Zheng, X. Tao, Appl. Catal. B-Environ. 226 (2018) 61-70.
DOI URL |
[17] | P. Niu, M. Qiao, Y.F. Li, L. Huang, T.Y. Zhai, Nano Energy 44 (2018) 73-81. |
[18] | Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty A.C.H. Huan, T.C. Sum, R. Ahuja, Z. Chen, Chem. Mat. 27 (2015) 4930-4933. |
[19] | J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 14766-14772. |
[20] |
X. Bai, L. Wang, R. Zong, Y. Zhu, J. Phys. Chem. C 117 (2013) 9952-9961.
DOI URL |
[21] | Q. Yan G.-F. Huang, D.-F. Li, M. Zhang, A.-L. Pan, W.-Q. Huang, J. Mater. Sci. Technol. 34 (2018) 2515-2520. |
[22] | E.-X. Han, Y.-Y. Li, Q.-H. Wang, W.-Q. Huang, L. Luo, W. Hu, G.F. Huang, J. Mater. Sci. Technol. 35 (2019) 2288-2296. |
[23] | B. Chai, J.T. Yan, C.L. Wang, Z.D. Ren, Y.C. Zhu, Appl. Surf. Sci. 391 (2017) 376-383. |
[24] |
M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, J. Am. Chem. Soc. 139 (2017) 13234-13242.
URL PMID |
[25] |
B. Chai, C. Liu, J.T. Yan, Z.D. Ren, Z.J. Wang, Appl. Surf. Sci. 448 (2018) 1-8.
DOI URL |
[26] |
X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal. B-Environ. 147 (2014) 82-91.
DOI URL |
[27] | J. Xu, Q. Gao, X. Bai, Z. Wang, Y. Zhu, Catal. Today 332 (2019) 227-235. |
[28] | Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S.S. Park, C.-S. Ha, D Zhao, Nano Res. 3 (2010) 632-642. |
[29] | M. Tahir, C.B. Cao, F.K. Butt, F. Idrees, N. Mahmood, Z. Ali, I. Aslam, M. Tanveer, M. Rizwan, T. Mahmood, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 13949-13955. |
[30] |
Z.W. Tong, D. Yang, Y.Y. Sun, Y.H. Nan, Z.Y. Jiang, Small 12 (2016) 4093-4101.
DOI URL PMID |
[31] |
J. Xu, Y. Wang, Y. Zhu, Langmuir 29 (2013) 10566-10572.
DOI URL PMID |
[32] |
J. Hong, S. Yin, Y. Pan, J. Han, T. Zhou, R. Xu, Nanoscale 6 (2014) 14984-14990.
DOI URL PMID |
[33] | R.R. Zhao, J.P. Gao, S.K. Mei, Y.L. Wu, X.X. Wang, X.G. Zhai, J.B. Yang, C.Y. Hao, J. Yan, Nanotechnology 2 (2017), 495710. |
[34] | Q.H. Liang, Z. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885-6892. |
[35] | W.G. Tu, Y. Xu, J.J. Wang, B.W. Zhang, T.H. Zhou, S.M. Yin, S.Y. Wu, C.M. Li, Y.Z. Huang, Y. Zhou, Z.G. Zou, J. Robertson, M. Kraft, R. Xu, ACS Sustainable Chem. Eng. 5 (2017) 7260-7268. |
[36] |
H. Yan, Chem. Commun. (Camb.) 48 (2012) 3430-3432.
DOI URL |
[37] | G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon, K. Al-Bahily, T. Mori, D.H. Park, A. Vinu, Angew. Chemie Int. Ed. English 56 (2017) 8481-8485. |
[38] |
M. Zhang, J. Xu, R. Zong, Y. Zhu, Appl. Catal. B-Environ. 147 (2014) 229-235.
DOI URL |
[39] |
J. Xu, Z.P. Wang, Y.F. Zhu, ACS Appl. Mater. Interf. 9 (2017) 27727-27735.
DOI URL |
[40] | S.E. Guo, Z.P. Deng, M.X. Li, B.J. Jiang, C.G. Tian, Q.J. Pan, H.G. Fu, Angew. Chemie Int. Ed. English 55 (2016) 1830-1834. |
[41] |
S.E. Guo, Y.Q. Tang, Y. Xie, C.G. Tian, Q.M. Feng, W. Zhou, B.J. Jiang, Appl. Catal. B- Environ. 218 (2017) 664-671.
DOI URL |
[42] |
Z. Mo, H. Xu, Z.G. Chen, X.J. She, Y.H. Song, J.J. Wu, P.C. Yan, L. Xu, Y.C. Leia, S.Q. Yuan, H.M. Li, Appl. Catal. B-Environ. 225 (2018) 154-161.
DOI URL |
[43] |
Y.B. Wang, X. Zhao, D. Cao, Y. Wang, Y.F. Zhu, Appl. Catal. B-Environ. 211 (2017) 79-88.
DOI URL |
[44] |
X. Qu, S. Hu, J. Bai, P. Li, G. Lu, X. Kang, J. Mater. Sci. Technol. 34 (2018) 1932-1938.
DOI URL |
[45] |
H.J. Yu, R. Shi, Y.X. Zhao, T. Bian, Y.F. Zhao, C. Zhou G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Mater. 29 (2017), 1605148.
DOI URL |
[46] |
P.F. Xia, B. Cheng, J.Z. Jiang, H. Tang, Appl. Surf. Sci. 487 (2019) 335-342.
DOI URL |
[47] |
J. Ding, W. Xu, H. Wan, D.S. Yuan, C. Chen, L. Wang, G.F. Guan, W.L. Dai, Appl. Catal. B-Environ. 221 (2018) 626-634.
DOI URL |
[48] |
J. Xu, M. Fujitsuka, S. Kim, Z. Wang, T. Majima, Appl. Catal. B-Environ. 241 (2019) 141-148.
DOI URL |
[49] |
R. Wang, X. Kong, W. Zhang, W. Zhu, L. Huang, J. Wang, X. Zhang, X. Liu, N. Hu, Y. Suo, J. Wang, Appl. Catal. B-Environ. 225 (2018) 228-237.
DOI URL |
[50] |
S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Appl. Catal. B-Environ. 186 (2016) 77-87.
DOI URL |
[1] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
[2] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[3] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
[4] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[5] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[6] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[7] | Miao-Miao Fang, Jun-Xia Shao, Xiang-Gang Huang, Jin-Yi Wang, Wei Chen. Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation [J]. J. Mater. Sci. Technol., 2020, 56(0): 133-142. |
[8] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[9] | Shanshan Chen, Bin Zhang, Bin Zhanggchun, Hao Lin, Hui Yang, Feng Zheng, Ming Chen, Ke Yang. Assessment of structure integrity, corrosion behavior and microstructure change of AZ31B stent in porcine coronary arteries [J]. J. Mater. Sci. Technol., 2020, 39(0): 39-47. |
[10] | Yi Wang, Wenyuan Li, Liang Ma, Wei Li, Xingbo Liu. Degradation of solid oxide electrolysis cells: Phenomena, mechanisms, and emerging mitigation strategies—A review [J]. J. Mater. Sci. Technol., 2020, 55(0): 35-55. |
[11] | Paulina Kazimierczak, Aleksandra Benko, Krzysztof Palka, Cristina Canal, Dorota Kolodynska, Agata Przekora. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds [J]. J. Mater. Sci. Technol., 2020, 43(0): 52-63. |
[12] | Da-Hai Xia, Shizhe Song, Lei Tao, Zhenbo Qin, Zhong Wu, Zhiming Gao, Jihui Wang, Wenbin Hu, Yashar Behnamian, Jing-Li Luo. Review-material degradation assessed by digital image processing: Fundamentals, progresses, and challenges [J]. J. Mater. Sci. Technol., 2020, 53(0): 146-162. |
[13] | Yuting Gao, Feng Chen, Zhe Chen, Hongfei Shi. NixCo1-xS as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4 [J]. J. Mater. Sci. Technol., 2020, 56(0): 227-235. |
[14] | Bowen Zhao, Zhengwang Zhu, Xin Dong Qin, Zhengkun Li, Haifeng Zhang. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46(0): 88-97. |
[15] | Madhusudhan Alle, Seung-Hwan Lee, Jin-Chul Kim. Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity [J]. J. Mater. Sci. Technol., 2020, 41(0): 168-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||