J. Mater. Sci. Technol. ›› 2020, Vol. 56: 18-44.DOI: 10.1016/j.jmst.2020.02.037
• Invited Review • Previous Articles Next Articles
Panyong Kuanga, Jingxiang Lowa,b,*(), Bei Chenga, Jiaguo Yua, Jiajie Fanc
Received:
2020-02-12
Revised:
2020-02-19
Accepted:
2020-02-19
Published:
2020-11-01
Online:
2020-11-20
Contact:
Jingxiang Low
Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts[J]. J. Mater. Sci. Technol., 2020, 56: 18-44.
Fig. 1. Crystal structure of parent M2AX, M3AX2 and M4AX3 phases, and their corresponding crystal structure of M2XTx, M3X2Tx and M4X3Tx, respectively.
Fig. 2. Graphical overview for papers published on MXene-based photocatalysts (a) and their utilizations in various photocatalytic applications from 2014 to 2020 (b). (The data for 2020 only cover the papers published before February 2020.).
Fig. 5. (a) Side view and (b) top view for the O-terminated Ti3C2 crystal structure. (c) Comparison of the photocatalytic H2 production activity of CdS loaded with 0 (CT0), 0.05 (CT0.05), 0.1 (CT0.1), 2.5 (CT2.5), 5 (CT5) and 7.5 (CT7.5) wt% of Ti3C2, pristine Ti3C2, CdS loaded with Pt (Pt-CdS), CdS loaded with NiS (NiS-CdS), CdS loaded with Ni (Ni-CdS) and CdS loaded with MoS2 (MoS2-CdS). (d) Time-resolved PL spectra for CT0 and CT2.5. (e) Schematic illustration for the photogenerated charge carrier migration pathway and (f) photocatalytic H2 production enhancement mechanism on CdS/Ti3C2 under light irradiation [70].
Fig. 6. (a) XRD patterns for various prepared samples. SEM images for TiO2 (b) and TiO2/Ti3C2Tx (c). (d) Comparison of photocatalytic H2 production activity for pure Ti3C2Tx, TiO2 loaded with 50 wt.% (TiO2/Ti3C2Tx-50 %), 25 wt.% (TiO2/Ti3C2Tx-25 %), 10 wt.% (TiO2/Ti3C2Tx-10 %), 5 wt.% (TiO2/Ti3C2Tx-5%) of Ti3C2Tx, pure TiO2 and TiO2 physically mixed with Ti3C2Tx (TiO2 mixed Ti3C2Tx) [69].
Fig. 7. SEM images for multilayer Ti3C2 (a) and single-layer Ti3C2 (b). (c) EIS plots for TiO2, 5 wt.% multilayer Ti3C2 loaded TiO2 (5-MTC/TO) and 5 wt.% single-layer Ti3C2 loaded TiO2 (5-STC/TO). (d) Photocatalytic H2 production activity for the TiO2, 2 wt.% single-layer Ti3C2 loaded TiO2 (2-STC/TO), 4 wt.% single-layer Ti3C2 loaded TiO2 (4-STC/TO), 5-STC/TO, 6 wt.% single-layer Ti3C2 loaded TiO2 (6-STC/TO) and 5-MTC/TO [92].
Fig. 8. (a) Schematic illustration for the preparation procedure of the CdS/Ti3C2. TEM (b) and HRTEM (c) images for CdS/Ti3C2. (d) Photocurrent density curves for CdS loaded with 0 wt.% (CT0), 1 wt.% (CT1), 2.5 wt.% (CT2.5) and 8 wt.% (CT8) of plasma-treated Ti3C2 and CdS loaded with normal Ti3C2 (NPCT1) [75].
Fig. 9. TEM images for the g-C3N4 (a-c) and g-C3N4/Ti3C2 (d-f). (g) Comparison of photocatalytic H2 activity for g-C3N4, 1 wt.% (1TC/CN), 2 wt.% (2TC/CN), 3 wt.% (3TC/CN), 4 wt.% (4TC/CN) and 5 wt.% (5TC/CN) of Ti3C2 loaded g-C3N4. (h) Schematic illustration for photocatalytic enhancement mechanism for g-C3N4/Ti3C2 [93].
Fig. 10. (a) Schematic illustration for the preparation procedure for the g-C3N4@Ti3C2 QDs. TEM (b) and HRTEM (c) images for g-C3N4@Ti3C2 QDs. (d) EDX elemental mapping images for the C, N and Ti elements. (e) Comparison of photocatalytic H2 production activity for g-C3N4 NSs, Pt-g-C3N4, Ti3C2/g-C3N4 and Ti3C2 QDs/g-C3N4 [95].
Fig. 11. (a) Schematic illustration for preparation procedure for various prepared samples and their corresponding SEM and TEM images. (b, c) Schematic illustration for composite formed without (b) and with (c) MXene [96].
Fig. 12. TEM (a) and HRTEM (b) images for the Nb2C. TEM (c) and HRTEM (d) images for the Nb2O5/C/Nb2C. (e) EIS plots for the Nb2CTx, Nb2CTx oxidized for 1 h (NCN-1.0), Nb2O5 and mechanically mixed Nb2CTx and Nb2O5 (MiX-NN). (f) Photocatalytic H2 production activity for the Nb2CTx, Nb2O5, Mix-NN and Nb2CTx oxidized for different time, including 0.5 h (NCN-0.5), 1 h and 1.5 h (NCN-1.5) [79].
Fig. 13. (a) Preparation procedure for the Ag3PO4/Ti3C2. (b) Comparison photocatalytic O2 evolution activity for Ag3PO4 with AgNO3 (Ag3PO4), Ag3PO4 without AgNO3 (Ag3PO4 (no AgNO3)), Ti3C2 loaded Ag3PO4 with AgNO3 (AM-20) and Ti3C2 loaded Ag3PO4 without AgNO3 (AM-20 (no AgNO3)) [53].
Fig. 14. SEM (a), TEM (b) and HRTEM (c) images for prepared TiO2/Ti3C2 nanoflower. (d) Photocatalytic overall water splitting activity for the optimized TiO2/Ti3C2 nanoflower [97].
Fig. 15. (a) Schematic illustration for TiO2/C using Ti3C2 as precursor. SEM (b) and TEM (c) images for the Ti3C2. Inset of (c) is the SAED pattern of Ti3C2. SEM (d), TEM (e) and (f, g) HRTEM images for TiO2/C [98].
Fig. 16. SEM images for Ti3C2 (TT0) (a, b) and optimized TiO2/Ti3C2 (TT550) (c, d). Photocurrent density curves (e) and photocatalytic CO2 reduction activity (f) toward CH4 production of TT0, P25 and Ti3C2 calcination at 350 °C (TT350), 450 °C (TT450), 550 °C (TT550), 650 °C (TT650) [78].
Fig. 17. (a) Schematic illustration for the preparation procedure for the CeO2/Ti3C2. Photocurrent density curves (b) and EIS plots (c) for CeO2, and CeO2 loaded with different loading content of Ti3C2 including 3 wt.% (CeO2/MX-3%), 5 wt.% (CeO2/MX-5%) and 7 wt.% (CeO2/MX-7%) [108].
Fig. 18. (a) SEM image for the Ti3C2 and its corresponding EDX elemental mapping images for Ti, F and O elements. (b) SEM image for the surface alkalinized Ti3C2 and its corresponding EDX elemental mapping images for Ti, F and O elements. (c) CO2 adsorption isotherm for the Ti3C2 (TC) and surface alkalinized Ti3C2 (TC-OH). Adsorption models for CO2 on the (d) F-terminated Ti3C2 and (e) OH-terminated Ti3C2 [55].
Fig. 19. (a-c) AFM characterization for Bi2WO6/Ti3C2. Light absorption spectra (d) and photocatalytic CO2 reduction activity (e) for Ti3C2 and Bi2WO6 loaded with different Ti3C2 contents including 0 wt.% (TB0), 0.5 wt.% (TB0.5), 1 wt.% (TB1), 2 wt.% (TB2) and 5 wt.% (TB5). (f) GC-MS analysis of photocatalytic CO2 reduction products for TB2 using 12C and 13C as CO2 sources [82].
Fig. 20. (a) Schematic illustration for the preparation of Cu2O/Ti3C2. TEM (b) and HRTEM (c) images for the Cu2O/Ti3C2. (d-h) EDX elemental mapping images for Cu2O/Ti3C2. (i) HRTEM image and corresponding top view (j) and side-view crystal structure (k) for Ti3C2 QDs. Calculated Fermi level (l) and density of state (m) of O-terminated Ti3C2 QDs [54].
Fig. 22. Rate constant (k) for photocatalytic MO degradation using TiO2/Ti3C2 prepared with increasing NH4F concentration during material preparation [72].
Fig. 23. TEM (a) and HRTEM (b) images for CuFe2O4/Ti3C2. (c) HPLC-MS spectrum for the resultant products for photocatalytic sulfamethazine degradation using CuFe2O4/Ti3C2. (d) Proposed photocatalytic sulfamethazine degradation pathway using CuFe2O4/Ti3C2 [118].
Fig. 24. (a) XRD patterns for α-Fe2O3, Ti3C2 and α-Fe2O3 loaded with 2 wt.% Ti3C2 (α-Fe2O3/Ti3C2-2). (b) SEM image for the α-Fe2O3/Ti3C2-2. (c) Photocatalytic RhB degradation activity of pristine Ti3C2 and α-Fe2O3/Ti3C2 with different Ti3C2 content, including 1 wt.% (α-Fe2O3/Ti3C2-1), 2 wt.% and 3 wt.% (α-Fe2O3/Ti3C2-3) wt.% [119].
Fig. 26. (a) SEM image for MoS2/Ti3C2. (b) Photocatalytic MO degradation activity for MoS2 and MoS2 loaded with different content of Ti3C2 including 20 wt.% (20 %M/T), 25 wt.% (25 %M/T), 30 wt.% (30 %M/T), 35 wt.% (35 %M/T) and 40 wt.% (40 %M/T). (c) Photocatalytic MO degradation activity of 30 %M/T before, after 30 min and after 60 min friction treatment [77].
Fig. 27. (a) Schematic illustration for the preparation of α-Fe2O3/ZnFe2O4/Ti3C2 and its corresponding magnetic property. TEM (b) and HRTEM (c) images for α-Fe2O3/ZnFe2O4/Ti3C2. (d) Photocatalytic RhB degradation rate constant for α-Fe2O3/ZnFe2O4/Ti3C2 with different Ti3C2 contents [121].
Fig. 28. (a) Schematic illustration for preparation procedure for In2S3/TiO2/Ti3C2. (b) Photocurrent density curves for In2S3 and In2S3/TiO2/Ti3C2 (InTi-16). (c) Comparison of photocatalytic MO degradation activity of InTi-16, In2S3/TiO2, In2S3/MoS2, In2S3/carbon nanotube (In2S3/CNT) and In2S3/reduced graphene oxide (In2S3/rGO) [122].
Fig. 29. SEM (a) and HRTEM (b) images for TiO2/Ti3C2/CdS. (c) PL spectra for TiO2/Ti3C2 and TiO2/Ti3C2 with 1 wt.% (1:1CTT), 2 wt.% (2:1CTT), 3 mol% (3:1CTT) and 4 mol% (4:1CTT) of CdS. (d) Schematic illustration for the photocatalytic dye degradation mechanism on TiO2/Ti3C2/CdS [74].
Fig. 31. (a) Schematic illustration for preparation procedure for AgInS2/Ti3C2. TEM (b) and HRTEM (c) images for the AgInS2/Ti3C2. (d-f) N2 adsorption configuration on different Ti3C2 surfaces [63].
Fig. 32. (a) TEM image for RuO2/TiO2/Ti3C2. (b) Photocatalytic N2 fixation for the various prepared samples for NH3 production with evolution of time [133].
[1] | A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 31(2019), 1807660. |
[2] | J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29(2017), 1601694. |
[3] | Z. Chen, S.B. Yang, Z.F. Tian, B.C. Zhu, Appl. Surf. Sci. 469(2019) 657-665. |
[4] | Y.J. Ren, D.Q. Zeng, W.J. Ong, Chin. J. Catal. 40(2019) 289-319. |
[5] | B. Wang, J.T. Zhang, F. Huang, Appl. Surf. Sci. 391(2017) 449-456. |
[6] | Y.B. Li, Z.L. Jin, L.J. Zhang, K. Fan, Chin. J. Catal. 40(2019) 390-402. |
[7] | Y.Q. Zhu, T. Wang, T. Xu, Y.X. Li, C.Y. Wang, Appl. Surf. Sci. 464(2019) 36-42. |
[8] |
Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 41(2012) 782-796.
URL PMID |
[9] | M. Hu, Z. Yao, X. Wang, Ind. Eng. Chem. Res. 56(2017) 3477-3502. |
[10] | P. Kuang, M. Sayed, J. Fan, B. Cheng, J. Yu, Adv. Energy Mater. 10(2020), 1903802. |
[11] |
X. Li, J. Yu, S. Wageh, A.A. Al-Ghamdi, J. Xie, Small 12 (2016) 6640-6696.
URL PMID |
[12] | X. Li, R.C. Shen, S. Ma, X.B. Chen, J. Xie, Appl. Surf. Sci. 430(2018) 53-107. |
[13] | M. Fang, X. Xiong, Y. Hao, T. Zhang, H. Wang, H.-M. Cheng, Y. Zeng, J. Mater. Sci. Technol. 35(2019) 1989-1995. |
[14] |
R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Nanoscale Horiz. 3(2018) 464-504.
URL PMID |
[15] |
J. Low, J. Yu, W. Ho, J. Phys. Chem. Lett. 6(2015) 4244-4251.
URL PMID |
[16] | L. Yang, Y. Liu, R. Zhang, W. Li, P. Li, X. Wang, Y. Zhou, Chin. J. Catal. 39(2018) 646-653. |
[17] | K.L. He, J. Xie, M.L. Li, X. Li, Appl. Surf. Sci. 430(2018) 208-217. |
[18] | F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41(2020) 9-20. |
[19] | P. Kuang, M. He, H. Zou, J. Yu, K. Fan, Appl. Catal. B-Environ. 254(2019) 15-25. |
[20] | Q. Yan, G.M. Huang, D. Li, M. Zhang, A. Pan, W. Huang, J. Mater. Sci. Technol. 34(2018) 2515-2520. |
[21] | L. Huang, Y. Zou, D. Chen, S. Wang, Chin. J. Catal. 40(2019) 1822-1840. |
[22] | Y. Hu, H.Y. Zhao, M. Tan, J.T. Liu, X.H. Shu, M.L. Zhang, S.S. Liu, Q. Ran, H. Li, X.Q. Liu, J. Mater. Sci. Technol. 55(2020) 173-181. |
[23] | P. Zhang, Q. Ru, H. Yan, X. Hou, F. Chen, S. Hu, L. Zhao, J. Mater. Sci. Technol. 35(2019) 1840-1850. |
[24] | F. Han, S. Luo, L. Xie, J. Zhu, W. Wei, X. Chen, F. Liu, W. Chen, J. Zhao, L. Dong, K. Yu, X. Zeng, F. Rao, L. Wang, Y. Huang, ACS Appl. Energy Mater. 11(2019) 8443-8452. |
[25] | X. Zhang, X. Liu, S. Dong, J. Yang, Y. Liu, Appl. Mater. Today 16 (2019) 315-321. |
[26] | N. Zhang, X. Jiang, J. Fan, W. Luo, Y. Xiang, W. Wu, M. Ren, X. Zhang, W. Cai, J. Xu, Nanotechnology 3 (2019), 505201. |
[27] |
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 28(2016) 1917-1933.
URL PMID |
[28] | P. Kuang, T. Tong, K. Fan, J. Yu, ACS Catal. 7(2017) 6179-6187. |
[29] | Z.-W. Zhang, Q.-H. Li, X.-Q. Qiao, D. Hou, D.-S. Li, Chin. J. Catal. 40(2019) 371-379. |
[30] | N. Li, J. Zhou, Z.Q. Sheng, W. Xiao, Appl. Surf. Sci. 430(2018) 218-224. |
[31] | J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8(2018), 1701503. |
[32] | Z. Li, Y.N. Ma, X.Y. Hu, E.Z. Liu, J. Fan, Chin. J. Catal. 40(2019) 434-445. |
[33] | B.C. Zhu, P.F. Xia, Y. Li, W.K. Ho, J.G. Yu, Appl. Surf. Sci. 391(2017) 175-183. |
[34] | D. He, Z. Zhang, Y. Xing, Y. Zhou, H. Yang, H. Liu, J. Qu, X. Yuan, J. Guan, Y. Zhang, Chem. Eng. J. 384(2020), 123258. |
[35] | Q. Zhang, J. Zhang, L. Zhang, M. Cao, F. Yang, W. Dai, Appl. Surf. Sci. 504(2020), 144366. |
[36] | Y. Xue, Q. Zhang, T. Zhang, L. Fu, ChemNanoMat 3 (2017) 352-361. |
[37] | Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao, H. Yu, Appl. Catal. B-Environ. 241(2019) 236-245. |
[38] |
L. Cheng, X. Li, H. Zhang, Q. Xiang, J. Phys. Chem. Lett. 10(2019) 3488-3494.
URL PMID |
[39] | X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, J. Mater. Chem. A5 (2017) 12899-12903. |
[40] | H. Fang, Y. Pan, M. Yin, C. Pan, Mater. Res. Bull. 121(2020), 110618. |
[41] | F. Xu, D. Zhang, Y. Liao, G. Wang, X. Shi, H. Zhang, Q. Xiang, J. Am. Ceram. Soc. 103(2019) 849-858. |
[42] | B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2(2017) 16098. |
[43] | X. Zhan, C. Si, J. Zhou, Z. Sun, Nanoscale Horiz. 5(2020) 235-258. |
[44] | Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, J. Tian, Chem. Eng. J. 383(2020), 123178. |
[45] |
H. Zou, B. He, P. Kuang, J. Yu, K. Fan, ACS Appl. Mater. Interfaces 10 (2018) 22311-22319.
URL PMID |
[46] | J. Peng, X. Chen, W. Ong, X. Zhao, N. Li, Chem 5 (2019) 18-50. |
[47] | Z. Li, Y. Wu, Small 15 (2019), 1804736. |
[48] | Z. Guan, X. Wang, T. Li, Q. Zhu, M. Jia, B. Xu, J. Mater. Sci. Technol. 35(2019) 1977-1981. |
[49] |
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, M.H. Rummeli, Chem. Soc. Rev. 48(2019) 72-133.
URL PMID |
[50] | Y. Zhuang, Y. Liu, X. Meng, Appl. Surf. Sci. 496(2019), 143647. |
[51] | H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu, X. Yuan, G. Zeng, Z.J. Xu, S. Li, J.W. Chew, Appl. Catal. B-Environ. 245(2019) 290-301. |
[52] | G. Jia, Y. Wang, X. Cui, W. Zheng, ACS Sustainable Chem. Eng. 6(2018) 13480-13486. |
[53] | C. Zhao, X. Yang, C. Han, J. Xu, Sol. RRL .(2019), 1900434. |
[54] | Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, P. Chen, Adv. Funct. Mater. 29(2019), 1806500. |
[55] | M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, ChenSusChem 11 (2018) 1606-1611. |
[56] |
A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia, Y. Shi, Y. Liu, P. Wangyang, L. He, Y. Liu, J. Phys. Chem. Lett. 10(2019) 6590-6597.
URL PMID |
[57] |
Q. Tang, Z. Sun, S. Deng, H. Wang, Z. Wu, J. Colloid Interface Sci. 564(2020) 406-417.
URL PMID |
[58] | X. Cheng, L. Zu, Y. Jiang, D. Shi, X. Cai, Y. Ni, S. Lin, Y. Qin, Chem. Commun. 54(2018) 11622-11625. |
[59] | H. Huang, Y. Song, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, Appl. Catal.B-Environ. 251(2019) 154-161. |
[60] | X. Ding, Y. Li, C. Li, W. Wang, L. Wang, L. Feng, D. Han, J. Mater. Sci. 54(2019) 9385-9396. |
[61] |
T. Wojciechowski, A. Rozmyslowska-Wojciechowska, G. Matyszczak, M. Wrzecionek, A. Olszyna, A. Peter, A. Mihaly-Cozmuta, C. Nicula, L. Mihaly-Cozmuta, S. Podsiadlo, D. Basiak, W. Ziemkowska, A. Jastrzebska, Inorg. Chem. 58(2019) 7602-7614.
DOI URL PMID |
[62] | Q. Liu, L. Ai, J. Jiang, J. Mater. Chem. A6 (2018) 4102-4110. |
[63] | J. Qin, X. Hu, X. Li, Z. Yin, B. Liu, K.-H. Lam, Nano Energy 61 (2019) 27-35. |
[64] |
H. Wang, R. Zhao, J. Qin, H. Hu, X. Fan, X. Cao, D. Wang, ACS Appl. Mater. Interfaces 11 (2019) 44249-44262.
DOI URL PMID |
[65] |
X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, Phys. Chem. Chem. Phys. 20(2018) 11405-11411.
URL PMID |
[66] | A.D. Handoko, S.N. Steinmann, Z.W. Seh, Nanoscale Horiz. 4(2019) 809-827. |
[67] |
P. Kuang, P. Zheng, Z. Liu, J. Lei, H. Wu, N. Li, T. Ma, Small 12 (2016) 6735-6744.
DOI URL PMID |
[68] | Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, H. Cui, Appl. Catal. B-Environ. 246(2019) 12-20. |
[69] | H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z.L Wu, ChenSusChem 9(2016) 1490-1497. |
[70] |
J. Ran, G. Gao, F. Li, T. Ma, A. Du, S. Qiao, Nat. Commun. 8(2017) 13907.
DOI URL PMID |
[71] | P. Huang, W. Liu, Z. He, C. Xiao, T. Yao, Y. Zou, C. Wang, Z. Qi, W. Tong, B. Pan, S. Wei, Y. Xie, Sci. China-Chem. 61(2018) 1187-1196. |
[72] | C. Peng, H. Wang, H. Yu, F. Peng, Mater. Res. Bull. 89(2017) 16-25. |
[73] | W. Yuan, L. Cheng, Y. An, S. Lv, H. Wu, X. Fan, Y. Zhang, X. Guo, J. Tang, Adv. Sci. 5(2018), 1700870. |
[74] | Q. Liu, X. Tan, S. Wang, F. Ma, H. Znad, Z. Shen, L. Liu, S. Liu, Environ. Sci. Nano 6 (2019) 3158-3169. |
[75] |
Y. Yang, D. Zhang, Q. Xiang, Nanoscale 11 (2019) 18797-18805.
DOI URL PMID |
[76] | Y. Li, S. Yang, Z. Liang, Y. Xue, H. Cui, J. Tian, Mater. Chem. Front. 3(2019) 2673-2680. |
[77] | S. Jiao, L. Liu, Ind. Eng. Chem. Res. 58(2019) 18141-18148. |
[78] | J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, J. Catal. 361(2018) 255-266. |
[79] | T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, J.K. Keum, Z. Qin, Z. Guo, Z. Wu, ChenSusChem 11 (2018) 688-699. |
[80] | Y. Li, F. Zhang, Y. Chen, J. Li, Y. Xu, Green Chem. 22(2020) 163-169. |
[81] | P. Kuang, M. He, B. Zhu, J. Yu, K. Fan, M. Jaroniec, J. Catal. 375(2019) 8-20. |
[82] | S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28(2018), 1800136. |
[83] | Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X. Wang, Nano-Micro Lett. 11(2019) 79. |
[84] | T.M. Di, B. Cheng, W.K. Ho, J.G. Yu, H. Tang, Appl. Surf. Sci. 470(2019) 196-204. |
[85] |
R.C. Shen, J. Xie, Q.J. Xiang, X.B. Chen, J.Z. Jiang, X. Li, Chin. J. Catal. 40(2019) 240-288.
DOI URL |
[86] | J.-H. Zhao, L.-W. Liu, K. Li, T. Li, F.-T. Liu, CrystEngComm 21 (2019) 2416-2421. |
[87] | P. Lin, J. Shen, X. Yu, Q. Liu, D. Li, H. Tang, Ceram. Int. 45(2019) 24656-24663. |
[88] | P. Wang, S.Q. Xu, F. Chen, H.G. Yu, Chin. J. Catal. 40(2019) 343-351. |
[89] | N. Xiao, S.S. Li, S. Liu, B.R. Xu, Y.D. Li, Y.Q. Gao, L. Ge, G.W. Lu, Chin. J. Catal. 40(2019) 352-361. |
[90] | Y. Xia, B. Cheng, J. Fan, J. Yu, G. Liu, Small 15(2019), 1902459. |
[91] | J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B-Environ. 243(2019) 556-565. |
[92] | T.M. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanoy, H.B. Ji, Z.Z. Qin, Z.L. Wu, ACS Appl. Energy Mater. 2(2019) 4640-4651. |
[93] |
T.M. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H.B. Ji, Z.Z. Qin, Z.L. Wu, Nanoscale 11 (2019) 8138-8149.
URL PMID |
[94] | M.M. Shao, Y.F. Shao, J.W. Chai, Y.J. Qu, M.Y. Yang, Z.L. Wang, M. Yang, W.F. Ip, C.T. Kwok, X.Q. Shi, Z.G. Lu, S.J. Wang, X.S. Wang, H. Pan, J. Mater. Chem. A5(2017) 16748-16756. |
[95] |
Y.J. Li, L. Ding, Y.C. Guo, Z.Q. Liang, H.Z. Cui, J. Tian, ACS Appl. Mater. Interfaces 11 (2019) 41440-41447.
DOI URL PMID |
[96] | C. Peng, P. Wei, X.Y. Li, Y.P. Liu, Y.H. Cao, H.J. Wang, H. Yu, F. Peng, L.Y. Zhang, B.S. Zhang, K.L. Lv, Nano Energy 53 (2018) 97-107. |
[97] | Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Appl. Mater. Today 13 (2018) 217-227. |
[98] | W.Y. Yuan, L.F. Cheng, Y.N. Zhang, H. Wu, S.L. Lv, L.Y. Chai, X.H. Guo, L.X. Zheng, Adv. Mater. Interfaces (2017), 1700577. |
[99] | D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Appl. Catal. B-Environ. 231(2018) 368-380. |
[100] | Q. Huang, J.G. Yu, S.W. Cao, C. Cui, B. Cheng, Appl. Surf. Sci. 358(2015) 350-355. |
[101] |
A. Meng, L. Zhang, B. Cheng, J. Yu, ACS Appl. Mater. Interfaces 11 (2019) 5581-5589.
URL PMID |
[102] | R. Shi, Y. Chen, ChemCatChem 11 (2019) 2270-2276. |
[103] | F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B-Environ. 230(2018) 194-202. |
[104] | M. Zhou, S. Wang, P. Yang, C. Huang, X. Wang, ACS Catal. 8(2018) 4928-4936. |
[105] | C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 31(2019), 1902868. |
[106] | T. Hou, N. Luo, Y.-T. Cui, J. Lu, L. Li, K.E. MacArthur, M. Heggen, R. Chen, F. Fan, W. Tian, S. Jin, F. Wang, Appl. Catal. B-Environ. 245(2019) 262-270. |
[107] |
Y. He, H. Rao, K. Song, J. Li, Y. Yu, Y. Lou, C. Li, Y. Han, Z. Shi, S. Feng, Adv. Funct. Mater. 29(2019), 1905153.
DOI URL |
[108] | J.Y. Shen, J. Shen, W.J. Zhang, X.H. Yu, H. Tang, M.Y. Zhang, Zulfiqar , Q.Q. Liu, Ceram. Int. 45(2019) 24146-24153. |
[109] |
R. He, Z. Lou, J. Gui, B. Tang, D. Xu, Appl. Surf. Sci. 504(2020), 144370.
DOI URL |
[110] |
C. Zhang, P. Zhao, S. Liu, K. Yu, Chin. J. Catal. 40(2019) 1324-1338.
DOI URL |
[111] |
B. Tryba, S. Jafari, M. Sillanpaa, A. Nitta, B. Ohtani, A.W. Morawski, Appl. Surf. Sci. 470(2019) 376-385.
DOI URL |
[112] |
J. Shen, R. Wang, Q.Q. Liu, X.F. Yang, H. Tang, J. Yang, Chin. J. Catal. 40(2019) 380-389.
DOI URL |
[113] |
B.-M. Jun, S. Kim, J. Heo, C.M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon, Nano Res. 12(2018) 471-487.
DOI URL |
[114] |
Z. Wang, L. Zang, X. Fan, H. Jia, L. Li, W.Y. Deng, C.Y. Wang, Appl. Surf. Sci. 358(2015) 479-484.
DOI URL |
[115] |
T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, J. Mater. Sci. Technol. 34(2018) 1494-1502.
DOI URL |
[116] |
Y.P. Gao, L.B. Wang, A.G. Zhou, Z.Y. Li, J.K. Chen, H. Bala, Q.K. Hu, X.X. Cao, Mater. Lett. 150(2015) 62-64.
DOI URL |
[117] |
W.J. Zhou, J.F. Zhu, F. Wang, M.J. Cao, T. Zhao, Mater. Lett. 206(2017) 237-240.
DOI URL |
[118] |
Y. Cao, Y. Fang, X. Lei, B. Tan, X. Hu, B. Liu, Q. Chen, J. Hazard. Mater. 387(2020), 122021.
URL PMID |
[119] |
H. Zhang, M. Li, J. Cao, Q. Tang, P. Kang, C. Zhu, M. Ma, Ceram. Int. 44(2018) 19958-19962.
DOI URL |
[120] |
Y. Fang, Y. Cao, Q. Chen, Ceram. Int. 45(2019) 22298-22307.
DOI URL |
[121] |
H.L. Zhang, M. Li, C.X. Zhu, Q.J. Tang, P. Kang, J.H. Cao, Ceram. Int. 46(2020) 81-88.
DOI URL |
[122] |
H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng, W. Tu, S. Wu, H.Y. Lee, Y.Z. Tan, J.W. Chew, Appl. Catal. B-Environ. 233(2018) 213-225.
DOI URL |
[123] |
C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, ACS Appl. Mater. Interfaces 8(2016) 6051-6060.
URL PMID |
[124] | M.H. Vu, M. Sakar, S.A. Hassanzadeh-Tabrizi T.O. Do, Adv. Mater. Interfaces . 2019), 1900091. |
[125] |
H. Liu, Chin. J. Catal. 35(2014) 1619-1640.
DOI URL |
[126] |
X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Mater. Horiz. 5(2018) 9-27.
DOI URL |
[127] |
H. Li, C. Mao, H. Shang, Z. Yang, Z. Ai, L. Zhang, Nanoscale 10 (2018) 15429-15435.
URL PMID |
[128] |
G. Wu, L. Yu, Y. Liu, J. Zhao, Z. Han, G. Geng, Appl. Surf. Sci. 481(2019) 649-660.
DOI URL |
[129] |
R. Li, Chin. J. Catal. 39(2018) 1180-1188.
DOI URL |
[130] |
Z. Li, G. Gu, S. Hu, X. Zou, G. Wu, Chin. J. Catal. 40(2019) 1178-1186.
DOI URL |
[131] |
C. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc. 140(2018) 14161-14168.
DOI URL PMID |
[132] | G. Dong, W. Ho, C. Wang, J. Mater. Chem. A3 (2015) 23435-23441. |
[133] | C.Y. Hao, Y. Liao, Y. Wu, Y.J. An, J.N. Lin, Z.F. Gu, M.H. Jiang, S. Hu, X.T. Wang, J. Phys. Chem. Solids 13 (2020), 109141. |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[3] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[4] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[5] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[6] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
[7] | Jianying Huang, Jiali Shen, Shuhui Li, Jingsheng Cai, Shanchi Wang, Yao Lu, Jihuan He, Claire J.Carmalt, Ivan P.Parkin, Yuekun Lai. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation [J]. J. Mater. Sci. Technol., 2020, 39(0): 28-38. |
[8] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
[9] | Renfei Cheng, Tao Hu, Minmin Hu, Changji Li, Yan Liang, Zuohua Wang, Hui Zhang, Muchan Li, Hailong Wang, Hongxia Lu, Yunyi Fu, Hongwang Zhang, Quan-Hong Yang, Xiaohui Wang. MXenes induce epitaxial growth of size-controlled noble nanometals: A case study for surface enhanced Raman scattering (SERS) [J]. J. Mater. Sci. Technol., 2020, 40(0): 119-127. |
[10] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
[11] | Han Yan, Meng Cai, Wen Li, Xiaoqiang Fan, Minhao Zhu. Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2020, 54(0): 144-159. |
[12] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[13] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[14] | Duoduo Gao, Ranran Yuan, Jiajie Fan, Xuekun Hong, Huogen Yu. Highly efficient S2--adsorbed MoSx-modified TiO2 photocatalysts: A general grafting strategy and boosted interfacial charge transfer [J]. J. Mater. Sci. Technol., 2020, 56(0): 122-132. |
[15] | Zhang Hui, Hu Tao, Wang Xiaohui, Zhou Yanchun. Structural defects in MAX phases and their derivative MXenes: A look forward [J]. J. Mater. Sci. Technol., 2020, 38(0): 205-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||