J. Mater. Sci. Technol. ›› 2020, Vol. 56: 122-132.DOI: 10.1016/j.jmst.2020.02.031
• Research Article • Previous Articles Next Articles
Duoduo Gaoa, Ranran Yuana, Jiajie Fanb, Xuekun Hongc, Huogen Yua,b,*()
Received:
2019-11-25
Revised:
2019-12-09
Accepted:
2019-12-12
Published:
2020-11-01
Online:
2020-11-20
Contact:
Huogen Yu
Duoduo Gao, Ranran Yuan, Jiajie Fan, Xuekun Hong, Huogen Yu. Highly efficient S2--adsorbed MoSx-modified TiO2 photocatalysts: A general grafting strategy and boosted interfacial charge transfer[J]. J. Mater. Sci. Technol., 2020, 56: 122-132.
Fig. 1. (A) Schematic diagram illustrating lactic acid-induced synthesis and (B) their corresponding color change of S2--adsorbed MoSx nanoparticle-modified TiO2 photocatalyst; (C) schematic illustration for electrostatic self-assembly process between S2--adsorbed MoSx nanoparticles and TiO2 photocatalyst.
Fig. 2. (A) XRD patterns of various samples: (a) TiO2, (b) a-MoSx/TiO2(0.1 wt%), (c) a-MoSx/TiO2(3 wt%), (d) a-MoSx/TiO2(8 wt.%), and (e) a-MoSx/TiO2(3 wt.% HCl).
Fig. 4. (A) XPS survey spectra and high-resolution spectra of Mo 3d (B, D), S 2p (C, E) for (a) TiO2, (b) a-MoSx/TiO2 (0.1 wt.%), (c) a-MoSx/TiO2 (3 wt.%) and (d) a-MoSx/TiO2 (8 wt.%).
Sample | TiO2 | a-MoSx/TiO2 (0.1 wt.%) | a-MoSx/TiO2 (3 wt.%) | a-MoSx/TiO2 (8 wt.%) | a-MoSx/TiO2 (3 wt.% HCl) |
---|---|---|---|---|---|
Mo (wt. %) | 0 | 0.01 | 0.97 | 2.10 | 1.04 |
S (wt. %) | 0 | 0.15 | 2.25 | 4.82 | 2.19 |
Table 1 Composition (wt.%) of various samples according ICP-OES results.
Sample | TiO2 | a-MoSx/TiO2 (0.1 wt.%) | a-MoSx/TiO2 (3 wt.%) | a-MoSx/TiO2 (8 wt.%) | a-MoSx/TiO2 (3 wt.% HCl) |
---|---|---|---|---|---|
Mo (wt. %) | 0 | 0.01 | 0.97 | 2.10 | 1.04 |
S (wt. %) | 0 | 0.15 | 2.25 | 4.82 | 2.19 |
Fig. 5. UV-vis spectra of various samples: (a) TiO2, (b) a-MoSx/TiO2 (0.1wt.%), (c) a-MoSx/TiO2 (3 wt.%), (d) a-MoSx/TiO2 (8 wt.%) and (e) a-MoS2/TiO2 (3 wt.% HCl).
Fig. 6. (A) Photocatalytic H2-evolution activities of various samples: (a) TiO2, (b) a-MoSx/TiO2 (0.05 wt.%), (c) a-MoSx/TiO2 (0.1 wt.%), (d) a-MoSx/TiO2 (0.5 wt.%), (e) a-MoSx/TiO2 (1 wt.%), (f) a-MoSx/TiO2 (3 wt.%), (g) a-MoSx/TiO2 (5 wt.%), (h) a-MoSx/TiO2 (8 wt.%) and (i) a-MoSx/TiO2 (3 wt.% HCl); (B) Cycling runs of a-MoSx/TiO2 (3 wt.%) sample.
Fig. 8. In situ and ex situ XPS spectra of Ti 2p (A) and O 1s (B) for TiO2 and a-MoSx/TiO2; Mo 3d (C) and S 2p (D) for a-MoSx and a-MoSx/TiO2 in dark and under UV-light irradiation; Schematic diagram for electron transfer pathway before contact (E), after contact (F) and after contact under irradiation (G) of S2--adsorbed MoSx and TiO2.
Fig. 10. (A) Transient-state photoluminescence spectras of TiO2 (a) and a-MoSx/TiO2 (3 wt.%) (b); (B) Linear sweep voltammetry curves, (C) transient photocurrent responses and (D) electrochemical impedance spectra for various samples: (a) TiO2, (b) a-MoSx/TiO2 (0.1 wt.%) and (c) a-MoSx/TiO2 (3 wt.%).
Fig. 12. Photocatalytic activity of typical photocatalysts before and after S2--adsorbed MoSx loading: (a) g-C3N4, (a′) a-MoSx/g-C3N4 (3 wt.%); (b) TiO2, (b′) a-MoSx/TiO2 (3 wt.%); (c) CdS, (c′) a-MoSx/CdS (3 wt.%).
[1] | W. Yu, S. Zhang, J. Chen, P. Xia, M.H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A6 (2018) 15668-15674. |
[2] |
F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41(2020) 9-20.
DOI URL |
[3] | J. Li, M. Zhang, X. Li, Q. Li, J. Yang, Appl. Catal. B212 (2017) 106-114. |
[4] | P. Wang, T. Wu, C. Wang, J. Hou, J. Qian, Y. Ao, ACS Sustain. Chem. Eng. 5(2017) 7670-7677. |
[5] | H. Yu, W. Liu, X. Wang, F. Wang, Appl. Catal. B225 (2018) 415-423. |
[6] | H. Wang, X. Hu, Y. Ma, D. Zhu, T. Li, J. Wang, Chin. J. Catal. 41(2020) 95-102. |
[7] | K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chin. J. Catal. 38(2017) 240-252. |
[8] | J. Li, M. Zhang, Q. Li, J. Yang, Appl. Surf. Sci. 391(2017) 184-193. |
[9] | X. Wu, X. Wang, F. Wang, H. Yu, Appl. Catal. B247 (2019) 70-77. |
[10] | J. Shen, R. Wang, Q. Liu, X. Yang, H. Tang, J. Yang, Chin. J. Catal. 40(2019) 380-389. |
[11] | K. Wang, B. Liu, J. Li, X. Liu, Y. Zhou, X. Zhang, X. Bi, X. Jiang, J. Mater. Sci. Technol. 35(2019) 615-622. |
[12] | A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 31(2019), 1807660. |
[13] | Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Lei, W. Shangguan, Green Chem. 16(2014) 2728-2735. |
[14] | K. He, J. Xie, M. Li, X. Li, Appl. Surf. Sci. 430(2018) 208-217. |
[15] | F. Xu, L. Zhang, B. Cheng, J. Yu, ACS Sustain. Chem. Eng. 6(2018) 12291-12298. |
[16] | Y. Zhu, Z. Zhang, N. Lu, R. Hua, B. Dong, Chin. J. Catal. 40(2019) 413-423. |
[17] | A. Liu, K. Liu, H. Zhou, H. Li, X. Qiu, Y. Yang, M. Liu, Sci. Bull. 63(2018) 1591-1596. |
[18] | D. Gao, W. Liu, Y. Xu, P. Wang, J. Fan, H. Yu, Appl. Catal. B26 (2020), 118190. |
[19] |
Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134(2012) 6575-6578.
URL PMID |
[20] | M. Liu, M. Liu, X. Wang, S.M. Kozlov, Z. Cao, P. De Luna, H. Li, X. Qiu, K. Liu, J. Hu, C. Jia, P. Wang, H. Zhou, J. He, M. Zhong, X. Lan, Y. Zhou, Z. Wang, J. Li, A. Seifitokaldani, C.T. Dinh, H. Liang, C. Zou, D. Zhang, Y. Yang, T.S. Chan, Y. Han, L. Cavallo, T.K. Sham, B.J. Hwang, E.H. Sargent, Joule 3 (2019) 1703-1718. |
[21] | D. Lang, T. Shen, Q. Xiang, ChemCatChem 7 (2015) 943-951. |
[22] | X. Wu, D. Gao, P. Wang, H. Yu, J. Yu, Carbon 153 (2019) 757-766. |
[23] | R. Shen, J. Xie, Q. Xiang, X. Chen, J. Jiang, X. Li, Chin. J. Catal. 40(2019) 240-288. |
[24] | W. Chen, Y. Wang, S. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan, Z. Jiang, Appl. Surf. Sci. 445(2018) 527-534. |
[25] | W. Zhang, H. Zhang, J. Xu, H. Zhuang, J. Long, Chin. J. Catal. 40(2019) 320-325. |
[26] | H. Yu, P. Xiao, P. Wang, J. Yu, Appl. Catal. B193 (2016) 217-225. |
[27] | K. Chang, H. Pang, X. Hai, G. Zhao, H. Zhang, L. Shi, F. Ichihara, J. Ye, Appl. Catal. B232 (2018) 446-453. |
[28] | D.P. Kumar, M.I. Song, S. Hong, E.H. Kim, M. Gopannagari, D.A. Reddy, T.K. Kim, ACS Sustain. Chem. Eng. 5(2017) 7651-7658. |
[29] |
J. Sun, L. Duan, Q. Wu, W. Yao, Chem. Eng. J. 332(2018) 449-455.
DOI URL |
[30] | D. Gao, H. Yu, Y. Xu, Appl. Surf. Sci. 462(2018) 623-632. |
[31] | J. Pencheva, B. Donkova, M. Djarova, S. Maksimova, Cryst. Res. Technol. 40(2005) 370-379. |
[32] | D. Wei, J. Liang, Y. Zhu, Z. Yuan, N. Li, Y. Qian, Part. Part. Syst. Charact. 30(2013) 143-147. |
[33] | C. Zhao, F. Liu, W. Kang, Y. Su, D. Wang, Q. Shen, Cryst. Growth Des. 11(2011) 2084-2090. |
[34] |
W. Zhong, X. Huang, Y. Xu, H. Yu, Nanoscale 10 (2018) 19418-19426.
URL PMID |
[35] | I. Larson, C.J. Drummond, D.Y.C. Chan, F. Grieser, J.Am. Chem. Soc. 115(1993) 11885-11890. |
[36] | J. Wang, G. Wang, X. Wang, Y. Wu, Y. Su, H. Tang, Carbon 149 (2019) 618-626. |
[37] | H. Yotsumoto, R.-H. Yoon, J.Colloid Interface Sci. 157(1993) 426-433. |
[38] | G. Liu, G. Wang, Z. Hu, Y. Su, L. Zhao, Appl. Surf. Sci. 465(2019) 902-910. |
[39] |
X. Wu, D. Gao, H. Yu, J. Yu, Nanoscale 11 (2019) 9608-9616.
DOI URL PMID |
[40] | C. Li, W. Yang, Q. Li, J. Mater, Sci. Technol. 34(2018) 969-975. |
[41] | H. Yu, R. Yuan, D. Gao, Y. Xu, J. Yu, Chem. Eng. J. 375(2019), 121934. |
[42] |
L. Oakes, R. Carter, T. Hanken, A.P. Cohn, K. Share, B. Schmidt, C.L. Pint, Nat. Commun. 7(2016) 11796.
URL PMID |
[43] | T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, J. Mater. Sci. Technol. 34(2018) 1494-1502. |
[44] | Y. Xu, Y. Li, P. Wang, X. Wang, H. Yu, Appl. Surf. Sci. 430(2018) 176-183. |
[45] | L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan, Z. Li, Appl. Catal. B144 (2014) 521-527. |
[46] |
Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A.A. Purezky, D.B. Geohegan, K.W. Kim, Y. Zhang, L. Cao, Nano Lett. 15(2015) 486-491.
URL PMID |
[47] |
W. Liu, X. Wang, H. Yu, J. Yu, ACS Sustain. Chem. Eng. 6(2018) 12436-12445.
DOI URL |
[48] | F. Xu, B. Zhu, B. Cheng, J. Yu, J. Xu, Adv. Opt. Mater. 6(2018), 1800911. |
[49] | X. Hai, W. Zhou, K. Chang, H. Pang, H. Liu, L. Shi, F. Ichihara, J. Ye, J. Mater. Chem. A5 (2017) 8591-8598. |
[50] | H. Yu, W. Zhong, X. Huang, P. Wang, J. Yu, ACS Sustain. Chem. Eng. 6(2018) 5513-5523. |
[51] | C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 31(2019), 1902868. |
[52] | H.-J. Jin, W.Y. Yoon, W. Jo, Appl. Phys. Lett. 110(2017), 191601. |
[53] | D. Gao, X. Wu, P. Wang, Y. Xu, H. Yu, J. Yu, ACS Sustain. Chem. Eng. 7(2019) 10084-10094. |
[54] | H. Kusama, H. Orita, H. Sugihara, Sol. Energy Mater. Sol. Cells 92 (2008) 84-87. |
[55] | J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 31(2019), 1802981. |
[56] | Y. Chen, A. Li, Q. Li, X. Hou, L.-N. Wang, Z.-H. Huang, J. Mater. Sci. Technol. 34(2018) 955-960. |
[57] | P. Wang, S. Xu, F. Chen, H. Yu, Chin. J. Catal. 40(2019) 343-351. |
[58] | T. Di, B. Cheng, W. Ho, J. Yu, H. Tang, Appl. Surf. Sci. 470(2019) 196-204. |
[59] | J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, M. Liu, Adv. Sci. 6(2019), 1900796. |
[1] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[2] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[3] | Yuting Gao, Feng Chen, Zhe Chen, Hongfei Shi. NixCo1-xS as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4 [J]. J. Mater. Sci. Technol., 2020, 56(0): 227-235. |
[4] | Zizhan Liang, Rongchen Shen, Hau Ng Yun, Peng Zhang, Quanjun Xiang, Xin Li. A review on 2D MoS2 cocatalysts in photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 89-121. |
[5] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[6] | Minghui Xiong, Juntao Yan, Bo Chai, Guozhi Fan, Guangsen Song. Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 179-188. |
[7] | Fengren Cao, Wei Tian, Liang Li. Ternary non-noble metal zinc-nickel-cobalt carbonate hydroxide cocatalysts toward highly efficient photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2018, 34(6): 899-904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||