J. Mater. Sci. Technol. ›› 2021, Vol. 71: 211-220.DOI: 10.1016/j.jmst.2020.09.008
• Research Article • Previous Articles Next Articles
Xueru Chena, Yin Zhanga, Dashui Yuana, Wu Huanga, Jing Dinga,*(), Hui Wana, Wei-Lin Daib, Guofeng Guana,*(
)
Received:
2020-04-20
Revised:
2020-07-27
Accepted:
2020-08-01
Published:
2021-04-30
Online:
2021-04-30
Contact:
Jing Ding,Guofeng Guan
About author:
guangf@njtech.edu.cn (G. Guan).Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI)[J]. J. Mater. Sci. Technol., 2021, 71: 211-220.
Fig. 1. XRD patterns (a) and the relative enlarged view of (002) peaks (b) of g-C3N4 and PCN; XRD patterns of Ni foam and Ni species at 500 ℃ and 550 ℃ (c); FT-IR spectra of g-C3N4 and PCN (d).
Sample | C (wt%) | N (wt%) | H (wt%) | C/N atomic ratio | C/H atomic ratio |
---|---|---|---|---|---|
g-C3N4 | 35.01 | 62.01 | 1.918 | 0.659 | 1.521 |
PCN | 34.97 | 61.80 | 2.023 | 0.660 | 1.441 |
Table 1 Elemental analysis of g-C3N4 and PCN.
Sample | C (wt%) | N (wt%) | H (wt%) | C/N atomic ratio | C/H atomic ratio |
---|---|---|---|---|---|
g-C3N4 | 35.01 | 62.01 | 1.918 | 0.659 | 1.521 |
PCN | 34.97 | 61.80 | 2.023 | 0.660 | 1.441 |
Sample | SBET (m2 g-1) | Total pore volume (cm3 g-1) | Average pore diameter (nm) |
---|---|---|---|
PCN | 75 | 0.52 | 27 |
g-C3N4 | 12 | 0.10 | 33 |
Table 2 Specific surface area, pore volume and pore size of g-C3N4 and PCN.
Sample | SBET (m2 g-1) | Total pore volume (cm3 g-1) | Average pore diameter (nm) |
---|---|---|---|
PCN | 75 | 0.52 | 27 |
g-C3N4 | 12 | 0.10 | 33 |
Fig. 4. UV-vis absorption spectra (a), Tauc plot for band gap determination (b) and photoluminescence spectra (c); Time-resolved fluorescence decay spectra monitored at 460 nm by time-correlated single-photon counting (d) of g-C3N4 and PCN.
Fig. 5. Electrochemical impedance spectra (a), transient photocurrent response (b), Mott-Schottky plot (c) and band structure alignment (d) of g-C3N4 and PCN.
Fig. 7. Effects of original pH (a) and initial concentration of Cr(VI)-containing solution (c) on the photocatalytic performance and corresponding ln(Ci0/Cit) versus time curves (b, d).
[1] |
R.F. Dong, Y.L. Zhong, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, J. Alloys. Compd. 784 (2019) 282-292.
DOI URL |
[2] |
J.Y. Kuang, Z.P. Xing, J.W. Yin, Z.Z. Li, Q. Zhu, W. Zhou, J. Colloid Interface Sci. 542 (2019) 63-72.
DOI URL |
[3] | H.N. Che, G.B. Che, P.J. Zhou, C.B. Liu, H.J. Dong, J. Alloys. Compd. 546 (2019) 262-275. |
[4] |
Y. Zhao, W.K. Chang, Z.D. Huang, X.G. Feng, L. Ma, X.X. Qi, Z.H. Li, Appl. Surf. Sci. 405 (2017) 102-110.
DOI URL |
[5] |
Y.Q. Guo, Y.D. Guo, D.D. Tang, Y.Y. Liu, X.G. Wang, P. Li, G.H. Wang, J. Alloys. Compd. 781 (2019) 1101-1109.
DOI URL |
[6] |
K. Xiao, J. He, J.J. Zhang, B. Yang, X. Zhao, Appl. Surf. Sci. 471 (2019) 912-920.
DOI |
[7] |
D.P. Jaihindh, B. Thirumalraj, S. Chen, P. Balasubramanian, Y. Fu, J. Hazard. Mater. 367 (2019) 647-657.
DOI URL |
[8] |
Q. Sun, H. Li, S.L. Zheng, Z.M. Sun, Appl. Surf. Sci. 311 (2014) 369-376.
DOI URL |
[9] |
X.F. Shen, L.L. Song, L. Luo, Y. Zhang, B. Zhu, J.S. Liu, Z.G. Chen, L.S. Zhang, J. Colloid Interface Sci. 532 (2018) 798-807.
DOI URL |
[10] |
C. Liang, C.G. Niu, H. Guo, D.W. Huang, X.J. Wen, S.F. Yang, G.M. Zeng, Catal. Sci. Technol. 8 (2018) 1161-1175.
DOI URL |
[11] | X. Yang, Y. Xiang, Y. Qu, J. Catal. 345 (2017) 319-328. |
[12] |
Y.C. Zhang, L. Yao, G. Zhang, Appl. Catal. B: Environ. 144 (2014) 730-738.
DOI URL |
[13] |
M.S. Jyothi, V. Nayak, M. Padaki, Chem. Eng. J. 283 (2016) 1494-1505.
DOI URL |
[14] | S. Kim, G.H. Moon, G. Kim, J. Catal. 346 (2017) 92-100. |
[15] |
D. Wang, Y. Li, G.P. Li, J. Hazard. Mater. 323 (2016) 681-689.
DOI URL |
[16] |
R. Jiang, G.H. Lu, Z.H. Yan, D.H. Wu, R.R. Zhou, X.H. Bao, Chem. Eng. J. 374 (2019) 79-90.
DOI URL |
[17] | R.R. Jiang, D.H. Wu, G.H. Lu, Z.H. Yan, J.C. Liu, R.R. Zhou, M. Nkoom, J. Taiwan Inst. Chen. E. 96 (2019) 681-690. |
[18] |
W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Chem. Eng. J. 382 (2020), 122876.
DOI URL |
[19] |
W. Wang, M. La, J.J. Fang, C.H. Lu, Appl. Surf. Sci. 439 (2018) 430-438.
DOI URL |
[20] |
C.H. Wang, X.T. Zhang, Y.C. Liu, Appl. Surf. Sci. 358 (2015) 28-45.
DOI URL |
[21] |
J. Ding, W. Xu, H. Wan, Appl. Catal. B: Environ. 221 (2017) 626-634.
DOI URL |
[22] |
W.K. Darkwah, B.B. Adormaa, M. Sandrine, Y. Ao, Catal. Sci. Technol. 9 (2019) 546-566.
DOI URL |
[23] |
M. Zeng, Y. Li, M. Mao, ACS Catal. 5 (2015) 3278-3286.
DOI URL |
[24] |
M.V. Sheridan, D.J. Hill, B.D. Sherman, Nano Lett. 17 (2017) 2440-2446.
DOI URL |
[25] |
Y.Z. Hong, E.L. Liu, J.Y. Shi, X. Lin, L.Z. Sheng, M. Zhang, L.Y. Wang, J.H. Chen, Int. J. Hydrogen Energy 44 (2019) 7194-7204.
DOI URL |
[26] |
W.P. Zhang, X.Y. Xiao, Y. Li, X.Y. Zeng, L.L. Zheng, C.X. Wan, Appl. Surf. Sci. 389 (2016) 496-506.
DOI URL |
[27] |
H.W. Huang, C.Y. Liu, H.L. Ou, T.Y. Ma, Y.H. Zhang, Appl. Surf. Sci. 470 (2019) 1101-1110.
DOI URL |
[28] |
H. Li, L. Wang, Y. Liu, Res. Chem. Inter. 42 (2016) 3979-3998.
DOI URL |
[29] |
B. Zhu, P. Xia, W. Ho, J. Yu, Appl. Surf. Sci. 344 (2015) 188-195.
DOI URL |
[30] |
X. Lin, C. Liu, J.B. Wang, S. Yang, J.Y. Shi, Y.Z. Hong, Sep. Purif. Technol. 226 (2019) 117-127.
DOI URL |
[31] | J.B. Wang, C. Liu, S. Yang, X. Lin, W.L. Shi, J. Phys. Chem. Solids 136 (2020), 109164. |
[32] |
H.N. Che, G.B. Che, P.J. Zhou, C.B. Liu, H.J. Dong, C.X. Li, N. Song, C.M. Li, Chem. Eng. J. 382 (2020), 122870.
DOI URL |
[33] |
S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397-10401.
DOI PMID |
[34] |
I. Troppová, M. Sihor, M. Reli, M. Ritz, P. Praus, K. Kocí, Appl. Surf. Sci. 430 (2018) 335-347.
DOI URL |
[35] |
Q. Fan, Y. Huang, Z. Chi, Catal. Today 264 (2016) 250-256.
DOI URL |
[36] | G.D. Ding, W.T. Wang, T. Jiang, B.X. Han, H.L. Fan, G.Y. Yang, Chem. Cat. Chem. 5 (2013) 192-200. |
[37] |
X.L. Lu, K. Xu, P.Z. Chen, K.C. Jia, S. Liu, C.Z. Wu, J. Mater. Chem. A 2 (2014) 18924-18928.
DOI URL |
[38] |
Q.H. Liang, Z. Li, Z. Huang, F. Kang, Q. Yang, Adv. Funct. Mater. 25 (2015) 6885-6892.
DOI URL |
[39] |
P. Yang, H. Ou, Y. Fang, X. Wang, Angew. Chem. Int. Ed. 56 (2017) 3992-3996.
DOI URL |
[40] |
Q. Tay, P. Kanhere, C. Ng, S. Chen, S. Chakraborty, A. Huan, T. Sum, R. Ahuja, Z. Chen, Chem. Mater. 27 (2015) 4930-4933.
DOI URL |
[41] |
P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Adv. Mater. 26 (2014) 8046-8052.
DOI URL |
[42] |
S. Chu, C. Wang, J. Fen, Y. Wang, Z. Zou, Int. J. Hydrogen Energy 39 (2014) 13519-13526.
DOI URL |
[43] |
B. Jürgens, E. Irran, J. Senker, J. Am. Chem. Soc. 125 (2003) 10288-10300.
DOI URL |
[44] |
Z.C. Xing, Q. Li, D.W. Wang, X.R. Yang, X.P. Sun, Electrochim. Acta 191 (2016) 841-845.
DOI URL |
[45] |
Z. Wang, W. Yu, J. Chen, M. Zhang, W. Li, K. Tao, J. Alloys. Compd. 466 (2008) 352-355.
DOI URL |
[46] |
J. Zhang, M. Zhang, C. Yang, X. Wang, Adv. Mater. 26 (2014) 4121-4126.
DOI URL |
[47] |
J. Wen, J. Xie, H. Zhang, ACS Appl. Mater. Inter. 9 (2017) 14031-14042.
DOI URL |
[48] |
Y.C. Zhang, Q. Zhang, Q.W. Shi, Z.Y. Cai, Z.J. Yang, Sep. Purif. Technol. 142 (2015) 251-257.
DOI URL |
[49] |
H.T. Wei, Q. Zhang, Y.C. Zhang, Z.J. Yang, A.P. Zhu, D.D. Dionysiou, Appl. Catal. A 521 (2016) 9-18.
DOI URL |
[50] |
D.S. Yuan, J. Ding, J. Zhou, L. Wang, H. Wan, W.L. Dai, G.F. Guan, J. Alloy. Comp. 762 (2018) 98-108.
DOI URL |
[51] |
P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
[52] |
Z. Lin, X. Wang, Angew. Chemie Int. Ed. 52 (2013) 1735-1738.
DOI URL |
[53] |
S. Martha, A. Nashim, K.M. Parida, J. Mater. Chem. A 1 (2013) 7816-7824.
DOI URL |
[54] |
H. Yan, H. Yang, J. Alloys. Compd. 509 (2011) L26-L29.
DOI URL |
[55] |
J.N. Huang, Y.H. Cao, H.J. Wang, H. Yua, F. Peng, H.B. Zou, Z.L. Liu, Chem. Eng. J. 373 (2019) 687-699.
DOI URL |
[56] |
L. Shen, S. Liang, W. Wu, J. Mater. Chem. A 1 (2013) 11473-11482.
DOI URL |
[57] |
X. Hao, Z. Jin, H. Yang, G. Lu, Y. Bi, Appl. Catal. B: Environ. 210 (2017) 45-56.
DOI URL |
[58] |
W. Li, Y. Gao, W. Chen, ACS Catal. 4 (2014) 1261-1266.
DOI URL |
[59] |
M. Wu, L. Li, Y. Xue, G. Xu, L. Tang, N. Liu, W. Huang, Appl. Catal. B: Environ. 228 (2018) 103-112.
DOI URL |
[60] |
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351 (2016) 361-365.
DOI URL |
[61] | Y. Li, R. Jin, Y. Xing, Adv. Energy Mater. 6 (2016) 1-5. |
[62] |
G. Liu, P. Niu, C.H. Sun, S.C. Smith, Z.G. Chen, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 132 (2010) 11642-11648.
DOI URL |
[63] | J. Ding, L. Wang, Q.Q. Liu, Y.Y. Chai, X. Liu, W.L. Dai, Appl. Catal. B: Environ. 176 (2015) 91-98. |
[64] |
H.H. Gao, S.W. Zhang, J.Z. Xu, Y. Dou, J.T. Zhou, R. Zhou, Alloy. Compd. 834 (2020) 155201-155210.
DOI URL |
[65] |
Z. Mo, H. Xu, Z.G. Chen, X.J. She, Y.H. Song, J.J. Wu, P.C. Yan, L. Xu, Y.C. Lei, S.Q. Yuan, H.M. Li, Appl. Catal. B: Environ. 225 (2018) 154-161.
DOI URL |
[66] |
Y.S. Jun, E.Z. Lee, X.C. Wang, W.H. Hong, G.D. Stucky, A. Thomas, Adv. Funct. Mater. 23 (2013) 3661-3667.
DOI URL |
[67] |
J. Wang, Z. Yang, W.Q. Yao, X.X. Gao, D.P. Tao, Appl. Catal. B: Environ. 238 (2018) 629-637.
DOI URL |
[68] |
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135 (2013) 18-21.
DOI URL |
[69] |
Z. Wang, W. Guan, Y. Sun, F. Dong, Z. Ying, W. Ho, Nanoscale 7 (2015) 2471-2479.
DOI URL |
[70] |
L. Shi, K. Chang, H.B. Zhang, X. Hai, L.Q. Yang, T. Wang, J.H. Ye, Small 12 (2016) 4431-4439.
DOI PMID |
[71] |
F. Zhang, Y.C. Zhang, C.Q. Zhou, Z.J. Yang, H.G. Xue, D.D. Dionysiou, Chem. Eng. J. 324 (2017) 140-153.
DOI URL |
[72] |
C. Liu, Q.S. Wu, M.W. Ji, H.J. Zhu, H.J. Hou, Q.H. Yang, C.F. Jiang, J.J. Wang, L. Tian, J. Chen, J. Alloy. Comp. 723 (2017) 1121-1131.
DOI URL |
[73] | Y.C. Zhang, F. Zhang, Z.J. Yang, H.G. Xue, D.D. Dionysiou, J. Catal. 344 (2016) 692-700. |
[74] |
Z.K. Jiang, K.X. Chen, Y.C. Zhang, Y.Y. Wang, F. Wang, G.S. Zhang, D. Dionysioue, Sep. Purif. Technol. 236 (2020) 116272-116283.
DOI URL |
[75] |
Q.L. Zhou, L. Li, Z.C. Xin, Y. Yu, L.X. Wang, W.Z. Zhang, J. Alloy. Comp. 813 (2020), 152190.
DOI URL |
[76] |
G. Velegraki, J.W. Miao, C. Drivas, B. Liu, S. Kennou, G.S. Armatas, Appl. Catal. B: Environ. 221 (2018) 635-644.
DOI URL |
[77] |
Q. Han, F. Zhao, C.G. Hu, L.X. Lv, Z.P. Zhang, N. Chen, L.T. Qu, Nano Res. 8 (2015) 1718-1728.
DOI URL |
[78] |
H.Y. Zhang, A.C. Yu, J. Phys. Chem. C 118 (2014) 11628-11635.
DOI URL |
[79] |
Z. Mo, X.J. She, Y.P. Li, L. Liu, L.Y. Huang, Z.G. Chen, Q. Zhang, H. Xu, H.M. Li, RSC Adv. 5 (2015) 101552-101562.
DOI URL |
[80] |
F. Zhang, Y. Zhang, G. Zhang, Appl. Catal. B: Environ. 236 (2018) 53-63.
DOI URL |
[81] |
W. Liu, J. Ni, X. Yin, Water Res. 53 (2014) 12-25.
DOI URL |
[82] |
F. Liu, J. Yu, G. Tu, L. Qu, J. Xiao, Appl. Catal. B: Environ. 201 (2017) 1-11.
DOI URL |
[83] |
Y.C. Deng, L. Tang, G.M. Zeng, Z.J. Zhu, M. Yan, Y.Y. Zhou, J.J. Wang, Y.N. Liu, J.J. Wang, Appl. Catal. B: Environ. 203 (2017) 343-354.
DOI URL |
[84] | J. Cao, B. Luo, H. Lin, Appl. Catal. B: Environ. 111 (2012) 288-296. |
[85] |
K. Yao, J. Li, S. Shan, Q. Jia, Catal. Commun. 101 (2017) 51-56.
DOI URL |
[86] | S. Chen, Y. Hu, S. Meng, Appl. Catal. B: Environ. 150 (2014) 564-573. |
[1] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[2] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
[3] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[4] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[5] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[6] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[7] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[8] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[9] | Jiuyi Li, Xiankang Zhong, Tianguan Wang, Tan Shang, Junying Hu, Zhi Zhang, Dezhi Zeng, Duo Hou, Taihe Shi. Synergistic effect of erosion and hydrogen on properties of passive film on 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 67(0): 1-10. |
[10] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[11] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[12] | Chongyang Yuan, Wei Chen, Zunxian Yang, Zhenguo Huang, Xuebin Yu. The effect of various cations/anions for MgH2 hydrolysis reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 186-192. |
[13] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[14] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[15] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||