J. Mater. Sci. Technol. ›› 2021, Vol. 65: 164-170.DOI: 10.1016/j.jmst.2020.03.086
• Research Article • Previous Articles Next Articles
Xiangang Lina,b, Xiaojuan Houa, Lixia Cuia, Shiqiang Zhaoc, Hong Bia, Haiwei Dua,*(), Yupeng Yuana,d,e,*(
)
Received:
2020-02-03
Revised:
2020-03-18
Accepted:
2020-03-25
Published:
2021-02-28
Online:
2021-03-15
Contact:
Haiwei Du,Yupeng Yuan
About author:
yupengyuan@ahu.edu.cn (Y. Yuan).Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation[J]. J. Mater. Sci. Technol., 2021, 65: 164-170.
Fig. 1. (a) UV-vis spectra of CN and CN-TAx photocatalysts. Insets: photographs of the as-synthesized CN-TAx photocatalysts. (b, c) XPS spectra of C 1s and N 1s, (d) Raman and (e) EPR spectra for CN and CN-TA20.
Fig. 2. (a) XRD patterns and (b) FTIR spectra of CN-TAx photocatalysts. (c) Solid-state 13C NMR spectra and (d) nitrogen adsorption-desorption isotherms of CN and CN-TA20.
Fig. 3. (a) Photocatalytic hydrogen production rate of CN-TA20 photocatalysts within 4 h. (b) Long-term hydrogen production and (c) photocatalytic cycling runs. (d) The wavelength-dependent hydrogen evolution of CN-TA20.
Fig. 4. (a) Mott-Schottky plots, (b) the schematic of band position, (c) steady-state and (d) transient-state PL spectra, (e) photocurrent response and (f) EIS spectra of CN and CN-TA20.
[1] |
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114 (2014) 9987-10043.
DOI URL PMID |
[2] |
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970-974.
DOI URL PMID |
[3] |
A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, Carbon 149 (2019) 693-721.
DOI URL |
[4] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76.
DOI URL PMID |
[5] |
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329.
DOI URL PMID |
[6] |
Q. Xu, B. Cheng, J. Yu, G. Liu, Carbon 118 (2017) 241-249.
DOI URL |
[7] |
L. Lin, Z. Yu, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 6164-6175.
DOI URL |
[8] |
J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72-123.
DOI URL |
[9] |
M. Xiao, B. Luo, S. Wang, L. Wang, J. Energy Chem. 27 (2018) 1111-1123.
DOI URL |
[10] |
J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018), 1701503.
DOI URL |
[11] |
S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358 (2015) 15-27.
DOI URL |
[12] |
J. Wu, N. Li, X.H. Zhang, H.B. Fang, Y.Z. Zheng, X. Tao, Appl. Catal. B: Environ. 226 (2018) 61-70.
DOI URL |
[13] |
Y. Zou, J.W. Shi, L. Sun, D. Ma, S. Mao, Y. Lv, Y. Cheng, Chem. Eng. J. 378 (2019), 122192.
DOI URL |
[14] |
X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 59 (2019) 644-650.
DOI URL |
[15] |
Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, Carbon 99 (2016) 111-117.
DOI URL |
[16] |
Y. Huang, D. Li, Z. Fang, R. Chen, B. Luo, W. Shi, Appl. Catal. B: Environ. 254 (2019) 128-134.
DOI URL |
[17] |
B. Zhu, L. Zhang, B. Cheng, J. Yu, Appl. Catal. B: Environ. 224 (2018) 983-999.
DOI URL |
[18] | J. Li, D. Wu, J. Iocozzia, H. Du, X. Liu, Y. Yuan, W. Zhou, Z. Li, Z. Xue, Z. Lin, Angew. Chem. Int. Ed. 131 (2019) 2007-2011. |
[19] |
A. Hayat, J. Khan, M.U. Rahman, S.B. Mane, W.U. Khan, M. Sohail, N.U. Rahman, N. Shaishta, Z. Chi, M. Wu, J. Colloid Interface Sci. 548 (2019) 197-205.
DOI URL PMID |
[20] |
K. Li, M. Sun, W.D. Zhang, Carbon 134 (2018) 134-144.
DOI URL |
[21] |
M. Zhu, C. Zhai, M. Sun, Y. Hu, B. Yan, Y. Du, Appl. Catal. B: Environ. 203 (2017) 108-115.
DOI URL |
[22] |
J. Tian, L. Zhang, X. Fan, Y. Zhou, M. Wang, R. Cheng, M. Li, X. Kan, X. Jin, Z. Liu, J. Mater. Chem. A 4 (2016) 13814-13821.
DOI URL |
[23] |
K. Li, W.D. Zhang, Small 14 (2018), 1703599.
DOI URL |
[24] |
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 29 (2017), 1605148.
DOI URL |
[25] |
D. Wang, H. Sun, Q. Luo, X. Yang, R. Yin, Appl. Catal. B: Environ. 156-157 (2014) 323-330.
DOI URL |
[26] |
J. Liu, Y. Yu, R. Qi, C. Cao, X. Liu, Y. Zheng, W. Song, Appl. Catal. B: Environ. 244 (2019) 459-464.
DOI URL |
[27] |
M. Tabbal, T. Christidis, S. Isber, P. Merel, M. El Khakani, M. Chaker, A. Amassian, L. Martinu, J. Appl. Phys. 98 (2005), 044310.
DOI URL |
[28] |
P.K. Chuang, K.H. Wu, T.F. Yeh, H. Teng, ACS Sustain. Chem. Eng. 4 (2016) 5989-5997.
DOI URL |
[29] |
D. Zheng, C. Pang, Y. Liu, X. Wang, Chem. Commun. 51 (2015) 9706-9709.
DOI URL |
[30] |
W. Che, H. Su, X. Zhao, Y. Li, H. Zhang, W. Zhou, M. Liu, W. Cheng, F.C. Hu, Q. Liu, J. Mater. Chem. A 7 (2019) 17315-17323.
DOI URL |
[31] |
M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Chem. Eur. J. 14 (2008) 8177-8182.
DOI URL PMID |
[32] |
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
[33] |
Z. Sun, Y. Jiang, L. Zeng, L. Huang, ChemSusChem 12 (2019) 1325-1333.
DOI URL PMID |
[34] |
X. Jin, L. Zhang, X. Fan, J. Tian, M. Wang, J. Shi, Appl. Catal. B: Environ. 237 (2018) 888-894.
DOI URL |
[35] |
H. Li, H.Y. Lee, G.S. Park, B.J. Lee, J.D. Park, C.H. Shin, W. Hou, J.S. Yu, Carbon 129 (2018) 637-645.
DOI URL |
[36] |
Y. Yu, W. Yan, W. Gao, P. Li, X. Wang, S. Wu, W. Song, K. Ding, J. Mater. Chem. A 5 (2017) 17199-17203.
DOI URL |
[37] |
C. Gao, J. Wang, H. Xu, Y. Xiong, Chem. Soc. Rev. 46 (2017) 2799-2823.
DOI URL PMID |
[38] |
F. Wang, Y. Wang, Y. Feng, Y. Zeng, Z. Xie, Q. Zhang, Y. Su, P. Chen, Y. Liu, K. Yao, Appl. Catal. B: Environ. 221 (2018) 510-520.
DOI URL |
[39] |
X. Fan, L. Zhang, M. Wang, W. Huang, Y. Zhou, M. Li, R. Cheng, J. Shi, Appl. Catal. B: Environ. 182 (2016) 68-73.
DOI URL |
[40] |
J. Xu, Z. Wang, Y. Zhu, J. Mater. Sci. Technol. 49 (2020) 133-143.
DOI URL |
[1] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[2] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[3] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[4] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[5] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[6] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[7] | Chongyang Yuan, Wei Chen, Zunxian Yang, Zhenguo Huang, Xuebin Yu. The effect of various cations/anions for MgH2 hydrolysis reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 186-192. |
[8] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[9] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[10] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[11] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[12] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[13] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[14] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[15] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||