J. Mater. Sci. Technol. ›› 2021, Vol. 73: 145-150.DOI: 10.1016/j.jmst.2020.09.016
• Letter • Previous Articles Next Articles
Jing Wanga, Li Youa, Zhibin Lia, Xiongjun Liua,*(), Rui Lia,b, Qing Dua, Xianzhen Wanga, Hui Wanga,*(
), Yuan Wua, Suihe Jianga, Zhaoping Lua
Published:
2021-05-20
Online:
2020-10-02
Contact:
Xiongjun Liu,Hui Wang
About author:
**wanghui@ustb.edu.cn (H. Wang).Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction[J]. J. Mater. Sci. Technol., 2021, 73: 145-150.
Fig. 2. Characterization of NPN/MG. (a) XRD patterns of the as-spun and as-dealloyed Ni40Zr40Ti20 MG wire and ribbon. (b) SEM images of the cross section of the dealloyed NPN/MG wire. (c), (d) and (e) are surface morphologies of the dealloyed Ni40Zr40Ti20 MG wire. (f) XPS spectra of Ni 2p for the surface of NPN/MG wire. (g) The TEM bright-field image of the NPN. (h) The selected-area electron diffraction patterns (SAED) of the NPN. (i) and (j) HRTEM and STEM-mapping images of the NPN, respectively.
Fig. 3. HER electrocatalytic activities of the NPN/MG. (a) Polarization curves and (b) Tafel plots of NPN/MG wire and NPN/MG ribbon for HER with iR compensation in 1.0 M KOH. (c) Comparison of both the kinetics (Tafel slope) and activity (the overpotential at the current density of 10 mA cm-2) with literature reported before. (d) Nyquist plots of the bare Ni40Zr40Ti20 MG and NPN/MG. (e) Electrochemical double-layer capacitance measurements of NPN/MG wire and NPN/MG ribbon. (f) Durability test of the NPN/MG wire and NPN/MG ribbon for the HER performed at the current density of 10 mA cm-2 in 1.0 M KOH.
Fig. 4. SEM images of the surfaces. The NPN/MG wire after (a) and before (b) HER stability test for 24 h at the current density of 10 mA cm-2 in 1.0 M KOH The NPN/MG ribbon after (c) and before (d) HER stability test for 12 h at the current density of 10 mA cm-2 in 1.0 M KOH.
[1] |
G.D. Shi, Z.X. Fan, L.L. Du, X.L. Fu, C.M. Dong, W. Xie, D.B. Zhao, M. Wang, M.J. Yuan, Mater. Chem. Front. 3 (2019) 821-828.
DOI URL |
[2] |
Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, Angewandte Chem.-Int. Edition 57 (2018) 7568-7579.
DOI URL |
[3] |
C. Hegde, X.L. Sun, K. Ngoc Dinh, A.J. Huang, H. Ren, B. Li, R. Dangol, C.T. Liu, Z.G. Wang, Q.Y. Yan, H. Li, ACS Appl. Mater. Interfaces 12 (2020) 2380-2389.
DOI URL |
[4] | D. Er, H. Ye, N.C. Frey, H. Kumar, J. Lou, V.B. Shenoy, Nano Letttters 18 (2018) 3943-3949. |
[5] |
M.X. Li, X.X. Liu, X.L. Hu, ACS Sustain. Chem. Eng. 6 (2018) 8847-8855.
DOI URL |
[6] |
Q. Liu, L.S. Xie, F. Qu, Z.A. Liu, G. Du, A.M. Asiri, X.P. Sun, Inorg. Chem. Front. 4 (2017) 1120-1124.
DOI URL |
[7] |
K. Ojha, S. Saha, P. Dagar, A.K. Ganguli, Phys. Chem. Chem. Phys. 20 (2018) 6777-6799.
DOI URL |
[8] |
J. Xiao, Z.Y. Zhang, Y. Zhang, Q.Y. Lv, F. Jing, K. Chi, S. Wang, Nano Energy 51 (2018) 223-230.
DOI URL |
[9] |
C.Y. Son, I.H. Kwak, Y.R. Lim, J. Park, Chem. Commun. 52 (2016) 2819-2822.
DOI URL |
[10] |
X.P. Zhang, S.Y. Zhu, L. Xia, C.D. Si, F. Qu, F.L. Qu, Chem. Commun. 54 (2018) 1201-1204.
DOI URL |
[11] |
Z.B. Li, J. Wang, X.J. Liu, R. Li, H. Wang, Y. Wu, X.Z. Wang, Z.P. Lu, Scr. Mater. 173 (2019) 51-55.
DOI URL |
[12] | R. Li, X.J. Liu, R.Y. Wu, J. Wang, Z.B. Li, K.C. Chan, H. Wang, Y. Wu, Z.P. Lu, Adv. Mater. 31 (2019), 190989. |
[13] |
X.X. Yang, W.C. Xu, S. Cao, S.L. Zhu, Y.Q. liang, Z.D. Cui, X.J. Yang, Z.Y. Li, S.L. Wu, A. Inoue, L.Y. Chen, Appl. Catal. B 246 (2019) 156-165.
DOI URL |
[14] |
L. Zuo, R. Li, Y. Jin, T. Zhang, J. Electrochem. Soc. 165 (2018) F207-F214.
DOI URL |
[15] |
J. Wang, X.J. Liu, R. Li, Z.B. Li, X.Z. Wang, H. Wang, Y. Wu, S.H. Jiang, Z.P. Lu, Inorg. Chem. Front. 7 (2020) 1127-1139.
DOI URL |
[16] |
J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, K. Sieradzki, J. Mater. Res. 21 (2006) 2611-2616.
DOI URL |
[17] |
Q. Zhang, Q.K. Li, M. Li, Acta Mater. 91 (2015) 174-182.
DOI URL |
[18] |
J.E. Gao, H.X. Li, F. Jiang, B. Winiarski, P.J. Withers, P.K. Liaw, Z.P. Lu, Metall. Mater. Trans. A 44 (2012) 2004-2009.
DOI URL |
[19] |
R. Li, X.J. Liu, H. Wang, D.Q. Zhou, Y. Wu, Z.P. Lu, Acta Mater. 105 (2016) 367-377.
DOI URL |
[20] |
Y.Y. Xie, Y. Ju, Y. Toku, Y. Morita, RSC Adv. 7 (2017) 30548-30553.
DOI URL |
[21] |
H.J. Qiu, J.L. Kang, P. Liu, A. Hirata, T. Fujita, M.W. Chen, J. Power Sources 247 (2014) 896-905.
DOI URL |
[22] |
J.S. Sun, Z. Wen, L.P. Han, Z.W. Chen, X.Y. Lang, Q. Jiang, Adv. Funct. Mater. 28 (2018), 1706127.
DOI URL |
[23] |
S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora, A.K. Yadav, D. Bhattacharyya, S.N. Jha, D.C. Kothari, Appl. Catal. B 192 (2016) 126-133.
DOI URL |
[24] |
Y.Q. Sun, L.F. Hang, Q. Shen, T. Zhang, H. Li, X.M. Zhang, X.J. Lyu, Y. Li, Nanoscale 9 (2017) 16674-16679.
DOI URL |
[25] |
Y. Xu, W.G. Tu, B.W. Zhang, S.M. Yin, Y.Z. Huang, M. Kraft, R. Xu, Adv. Mater. 29 (2017), 1605957.
DOI URL |
[26] |
M.M. Guo, Y.H. Qu, F.Y. Zeng, C.L. Yuan, Electrochim. Acta 292 (2018) 88-97.
DOI URL |
[27] |
T. Tian, L. Huang, L.H. Ai, J. Jiang, J. Mater. Chem. A 5 (2017) 20985-20992.
DOI URL |
[28] |
H.Q. Zhou, Y.M. Wang, R. He, F. Yu, J.Y. Sun, F. Wang, Y.C. Lan, Z.F. Ren, S. Chen, Nano Energy 20 (2016) 29-36.
DOI URL |
[29] |
Y. Shen, Y.F. Zhou, D. Wang, X. Wu, J. Jia, J.Y. Xi, Adv. Energy Mater. 8 (2018), 1701759.
DOI URL |
[30] |
X.D. Yan, L.H. Tian, X.B. Chen, J. Power Sources 300 (2015) 336-343.
DOI URL |
[31] |
C.C. Li, J.X. Hou, Z.X. Wu, K. Guo, D.L. Wang, T.Y. Zhai, H.Q. Li, Sci. China Mater. 60 (2017) 918-928.
DOI URL |
[32] |
Z.L. Chen, R.B. Wu, Y. Liu, Y. Ha, Y.H. Guo, D.L. Sun, M. Liu, F. Fang, Adv. Mater. 30 (2018), 1802011.
DOI URL |
[33] | B. Liu, H.Q. Peng, J.Y. Cheng, K. Zhang, D. Chen, D. Shen, S.L. Wu, T.P. Jiao, X. Kong, Q.L. Gao, S.Y. Bu, C.S. Lee, W.J. Zhang, Small 15 (2019), 1901545. |
[34] |
H.Y. Li, S.M. Chen, Y. Zhang, Q.H. Zhang, X.F. Jia, Q. Zhang, L. Gu, X.M. Sun, L. Song, X. Wang, Nat. Commun. 9 (2018) 1-12.
DOI URL |
[1] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[2] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[3] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[4] | Seung Man Lim, Kyunglee Kang, Hongje Jang, Jung Tae Park. Environmental friendly synthesis of hierarchical mesoporous platinum nanoparticles templated by fucoidan biopolymer for enhanced hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2020, 46(0): 185-190. |
[5] | Jieqiong Wang, Zheng Liu, Changhong Zhan, Kexi Zhang, Xiaoyong Lai, Jinchun Tu, Yang Cao. 3D hierarchical NiS2/MoS2 nanostructures on CFP with enhanced electrocatalytic activity for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2020, 39(0): 155-160. |
[6] | Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd [J]. J. Mater. Sci. Technol., 2020, 48(0): 123-129. |
[7] | Dianguo Ma, Yingmin Wang, Yanhui Li, Umetsu Rie Y., Shuli Ou, Kunio Yubuta, Wei Zhang. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36(0): 128-133. |
[8] | Qingzhuo Hu, Fabao Zhang, Jinjun Zhang, Wei Jiang, Bo Zhang. Attractive nanofiber structure based on Cu-Ti/metal sandwich film with excellent electrocatalytic performance for ethanol oxidation [J]. J. Mater. Sci. Technol., 2020, 58(0): 215-221. |
[9] | Zheng Liu, Jieqiong Wang, Changhong Zhan, Jing Yu, Yang Cao, Jinchun Tu, Changsheng Shi. Phosphide-oxide honeycomb-like heterostructure CoP@CoMoO4/CC for enhanced hydrogen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2020, 46(0): 177-184. |
[10] | Ning Wang, Ye Pan, Shikai Wu. Relationship between dealloying conditions and coarsening behaviors of nanoporous copper fabricated by dealloying Cu-Ce metallic glasses [J]. J. Mater. Sci. Technol., 2018, 34(7): 1162-1171. |
[11] | Wenbo Liu, Shichao Zhang, Ning Li, Jiwei Zheng, Yalan Xing. Fabrication and Dealloying Behavior of Monolithic Nanoporous Copper Ribbons with Bimodal Channel Size Distributions [J]. J Mater Sci Technol, 2012, 28(8): 693-699. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||