J. Mater. Sci. Technol. ›› 2020, Vol. 58: 215-221.DOI: 10.1016/j.jmst.2020.03.062
• Research Article • Previous Articles
Qingzhuo Hua,b, Fabao Zhanga,b, Jinjun Zhangc, Wei Jianga,b, Bo Zhanga,b,*(
)
Received:2020-01-20
Accepted:2020-03-15
Published:2020-12-01
Online:2020-12-17
Contact:
Bo Zhang
Qingzhuo Hu, Fabao Zhang, Jinjun Zhang, Wei Jiang, Bo Zhang. Attractive nanofiber structure based on Cu-Ti/metal sandwich film with excellent electrocatalytic performance for ethanol oxidation[J]. J. Mater. Sci. Technol., 2020, 58: 215-221.
Fig. 1. FESEM surface and cross-section morphologies of three support films prepared by dealloying: (a, b) Cu-Ti amorphous alloy thin film precursor; (c, d) Cu-Ti/Ti sandwich multilayer film precursor; (e, f) Cu-Ti/Cu sandwich multilayer film precursor.
Fig. 2. (a) Dealloying process and forming the nanofibrous structural material for directional growth, (b) the sedimentary cross-section morphology diagram of Cu-Ti/Cu sandwich multilayer films, (c) Ti atoms removed and Cu atoms rearranged to form a skeleton connected from the substrate upwards between the multilayer films and (d) precipitate and growth of TiO2 on the connected skeletons.
Fig. 7. CV curves of (a) Pd/NFF catalyst in 1.0 M KOH solution containing 1.0 M ethanol and (b) Pd/NiO/NFF catalyst in 1.0 M KOH solution in the presence of different concentrations of ethanol (0.5, 1.0, 5.0 and 10.0 M) at scan rate 100 mV s-1.
Fig. 8. Chronoamperometry curves curves of Pd/NiO/NFF catalyst in 1.0 M KOH solution in the presence of different concentrations of and ethanol (0.5, 1.0, 5.0 and 10.0 M).
| [1] | E. Antolini, J. Power Sources 170 (2007) 1-12. |
| [2] | F. Vigier, C. Coutanceau, A. Perrard, E.M. Belgsir, C. Lamy, J. Appl. Electrochem. 34 (2004) 439-446. |
| [3] | A.S. Arico, S. Srinivasan, V. Antonucci, Fuel Cells 2 (2001) 133-161. |
| [4] | M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Int. J. Hydrogen Energy 38 (2013) 9438-9453. |
| [5] | J. Guo, R. Chen, F.C. Zhu, S.G. Sun, H.M. Villullas, Appl. Catal. B: Environ. 224 (2018) 602-611. |
| [6] | P. Mohanta, F. Regnet, L. Jörissen, Materialls 11 (2018) 1-10. |
| [7] | Y. Shao, J. Liu, Y. Wang, Y. Lin, J. Mater. Chem. 19 (2009) 46-59. |
| [8] | X. Xia, J.L.R. Yates, G. Jones, M. Sarwar, J. Mater. Chem. A 4 (2016) 15181-15188. |
| [9] | K.H. Ye, S.A. Zhou, X.C. Zhu, C.W. Xu, P.K. Shen, Electrochim. Acta 90 (2013) 108-111. |
| [10] | L. Liu, B. Qiao, Y. He, F. Zhou, B. Yang, Y. Deng, J. Catal. 294 (2012) 29-36. |
| [11] | A.S. Ivanova, E.M. Slavinskaya, R.V. Gulyaev, V.I. Zaikovskii, O.A. Stonkus, I.G. Danilova, L.M. Plyasova, I.A. Polukhina, A.I. Boronin, Appl. Catal. B: Environ. 98 (2010) 57-71. |
| [12] | K. Su, C. Chen, R. Wu, J. Taiwan Inst. Chen. Eng. 96 (2019) 409-418. |
| [13] | J. Moreira, P. Del Angel, A.L. Ocampo, P.J. Sebastián, J.A. Montoya, R.H. Castellanos, Int. J. Hydrogen Energy 29 (2004) 915-920. |
| [14] | Y. Lin, X. Cui, X. Ye, Electrochem. Commun. 7 (2005) 267-274. |
| [15] | L.A. Estudillo-Wong, A.M. Vargas-Gómez, E.M. Arce-Estrada, A. Manzo-Robledo, Electrochim. Acta 112 (2013) 164-170. |
| [16] |
X. Fuku, M. Modibedi, N. Matinise, P. Mokoena, N. Xaba, M. Mathe, J. Colloid Interface Sci. 545 (2019) 138-152.
URL PMID |
| [17] |
M. Carmo, R.C. Sekol, S.Y. Ding, G. Kumar, J. Schroers, A.D. Taylor, ACS Nano 5 (2011) 2979-2983.
DOI URL |
| [18] | J. Gomes, A. Lopes, K. Bednarczyk, M. Gmurek, M. Stelmachowski, A. Zaleska-Medynska, M.E. Quinta-Ferreira, R. Costa, R.M. Quinta-Ferreira, R.C. Martins, Inorg. Chem. Eng. 2 (2018) 4. |
| [19] | Q.Z. Hu, F.B. Zhang, W. Jiang, B. Zhang, J. Alloys Compd. 772 (2019) 1088-1094. |
| [20] | I. Sanghi, S. Visvanathan, Electrochim. Acta 7 (1962) 567-575. |
| [21] | P.O. Larsson, A. Andersson, R.L. Wallenberg, B. Svensson, J. Catal. 163 (1996) 279-293. |
| [22] | J.L. Ong, L.C. Lucas, G.N. Raikar, J.C. Gregory, Appl. Surf. Sci. 72 (1993) 7-13. |
| [23] | Z. Hussain, M.A. Salim, M.A. Khan, E.E. Khawaja, J. Non-Cryst. Solids 110 (1989) 44-52. |
| [24] | J. Ghijsen, L.H. Tjeng, J. Van Elp, H. Eskes, Phys. Rev. B 38 (1988) 11322-11330. |
| [25] | C. Sleigh, A.P. Pijpers, A. Jaspers, B. Coussens, R. Meier, J. Electron, Spectrosc. Relat. Phenom. 77 (1996) 41-57. |
| [26] | X. Shu, Y. Wang, Y. Qin, C. Yu, J. Zhang, J. Zhao, J. Cui, H. Zheng, Y. Zhang, W. Wang, Y. Wu, J. Solid State Electrochem. 21 (2017) 1489-1497. |
| [27] | A.N. Mansour, Spectra 3 (1994) 231-238. |
| [28] | E.L. Ratcliff, J. Meyer, K.X. Steirer, A. Garcia, J.J. Berry, D.S. Ginley, D.C. Olson, A. Kahn, N.R. Armstrong, J. Chem. Mater. 23 (2011) 4988-5000. |
| [29] | B.E. Koel, A. Sellidj, M.T. Paffett, Phys. Rev. B 46 (1992) 7846-7856. |
| [30] |
M. Niu, W. Xu, S. Zhu, Y. Liang, Z. Cui, X. Yang, A. Inoue, J. Power Sources 362 (2017) 10-19.
DOI URL |
| [31] | Y. Kim, J. Kim, D.H. Kim, RSC Adv. 8 (2018) 2441-2448. |
| [32] | R.S. Amin, R.M. Abdel Hameed, K.M. El-Khatib, H. El-Abd, E.R. Souaya, Int. J. Hydrogen Energy 37 (2012) 18870-18881. |
| [33] | J.A.D. del Rosario, J.D. Ocon, H. Jeon, Y. Yi, J.K. Lee, J.Y. Lee, J. Phys. Chem. C 118 (2014) 22473-22478. |
| [34] | H. An, L. Pan, H. Cui, B. Li, D. Zhou, J. Zhai, Q. Li, Electrochim. Acta 102 (2013) 79-87. |
| [35] | X. Cui, P. Xiao, J. Wang, M. Zhou, W. Guo, Y. Yang, Y. He, Z. Wang, Y. Yang, Y. Zhang, Z. Lin, Angew. Chem. 129 (2017) 4559-4564. |
| vier B.V |
| [1] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
| [2] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
| [3] | Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd [J]. J. Mater. Sci. Technol., 2020, 48(0): 123-129. |
| [4] | Dianguo Ma, Yingmin Wang, Yanhui Li, Umetsu Rie Y., Shuli Ou, Kunio Yubuta, Wei Zhang. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36(0): 128-133. |
| [5] | Ning Wang, Ye Pan, Shikai Wu. Relationship between dealloying conditions and coarsening behaviors of nanoporous copper fabricated by dealloying Cu-Ce metallic glasses [J]. J. Mater. Sci. Technol., 2018, 34(7): 1162-1171. |
| [6] | Wenbo Liu, Shichao Zhang, Ning Li, Jiwei Zheng, Yalan Xing. Fabrication and Dealloying Behavior of Monolithic Nanoporous Copper Ribbons with Bimodal Channel Size Distributions [J]. J Mater Sci Technol, 2012, 28(8): 693-699. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
