J. Mater. Sci. Technol. ›› 2020, Vol. 48: 123-129.DOI: 10.1016/j.jmst.2020.03.012
• Research Article • Previous Articles Next Articles
Y.Z. Chen*(), X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu*(
)
Received:
2019-11-11
Accepted:
2019-12-23
Published:
2020-07-01
Online:
2020-07-13
Contact:
Y.Z. Chen,F. Liu
Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48: 123-129.
Fig. 1. Typical microstructures of the nanoporous Pd dealloyed at different potentials (versus SCE) of (a) +0.2 V and (b) +0.25 V and (c) their corresponding ligament and pore sizes.
Fig. 2. Microstructures of the nanoporous Pd dealloyed under a potential of +0.3 V (versus SCE) with different precursor alloy compositions of (a) Pd15Co85, (b) Pd20Co80 and (c) Pd25Co75 and (d) their corresponding ligament and pore sizes.
[1] | D. Ding, Z. Chen, Adv. Mater. 19 (2007) 1996-1999. |
[2] | H.J. Noh, H.J. Kim, Y.M. Park, J.S. Park, H.N. Lee, Appl. Surf. Sci. 480 (2019) 52-56. |
[3] |
J. Weismüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Würschum, H. Gleiter, Science 300 ( 2003) 312-315.
DOI URL PMID |
[4] |
J. Zhang, Q. Bai, Z. Zhang, Nanoscale 8 ( 2016) 7287-7295.
URL PMID |
[5] | X. Ge, R. Wang, P. Liu, Y. Ding, Chem. Mater. 19 (2007) 5827-5829. |
[6] | J. Snyder, T. Fujita, M.W. Chen, J. Erlebacher, Nat. Mater. 9 (2010) 904-907. |
[7] | Y. Yan, G. Lin, X.Y. Lang, C.B. Zhu, T. Fujita, M.W. Chen, J. Marier, Adv. Mater. 23 (2011) 2443-2447. |
[8] |
X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nat. Nanotechnol. 6 (2011) 232-236.
URL PMID |
[9] | L.H. Qian, X.Q. Yan, T. Fujita, A. Lnoue, M.W. Chen, Appl. Phys. Lett. 90 (2007), 153120. |
[10] | E.E.L. Swan, K.C. Popat, T.A. Desai, Biomaterials 26 ( 2005) 1969-1976. |
[11] |
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410 ( 2001) 450-453.
URL PMID |
[12] | Y. Ding, Y.J. Kim, J. Erlebacher, Adv. Mater. 16 (2004) 1897-1900. |
[13] | D.V. Pugh, A. Dursun, S.G. Corcoran, J. Mater. Res. 18 (2003) 216-221. |
[14] | M. Hakamada, M. Mabuchi, Mater. Trans. 50 (2009) 431-435. |
[15] | Z. Wang, Y. Wang, H. Gao, J. Niu, J. Zhang, Z. Peng, Z. Zhang, Nanoscale Horiz. 3 (2018) 408-416. |
[16] | X.G. Wang, Z. Qi, C.C. Zhao, W.M. Wang, Z.H. Zhang, J. Phys. Chem. C 113 ( 2009) 13139-13150. |
[17] | W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, S.S. An, Y.L. Xing, Int. J. Electrochem. Sci. 6 (2011) 5445-5461. |
[18] | L. Sun, C.L. Chien, P.C. Searson, Chem. Mater. 16 (2004) 3125-3129. |
[19] | J. Snyder, P. Asanithi, A.B. Dalton, J. Erlebacher, Adv. Mater. 20 (2008) 4883-4886. |
[20] | X.G. Wang, W.M. Wang, Z. Qi, C.C. Zhao, H. Ji, Z.H. Zhang, Electrochem. Commun. 11 (2009) 1896-1899. |
[21] | B.J. Kim, J.S. Kim, Int. J. Hydrogen Energy 39 ( 2014) 16500-16505. |
[22] | R.N. Viswanath, J. Weismüller, Acta Mater. 61 (2013) 6301-6309. |
[23] | M. Hakamada, H. Nakano, T. Furukawa, M. Takahashi, M. Mabuchi, J. Phys. Chem. C 114 ( 2010) 868-873. |
[24] |
C.X. Xu, J.X. Su, X.H. Xu, P.P. Liu, H.J. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc. 129 (2007) 42-43.
URL PMID |
[25] | Z.H. Zhang, Y. Wang, Z. Qi, W.H. Zhang, J.W. Qin, J. Frenzel, J. Phys. Chem. C113 (2009) 12629-12636. |
[26] | Y. Sun, T.J. Balk, Scr. Mater. 58 (2008) 727-730. |
[27] | Q. Zhang, X.G. Wang, Z. Qi, Y. Wang, Z.H. Zhang, Electrochim. Acta 54 ( 2009) 6190-6198. |
[28] | J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, K. Sieradzki, J. Mater. Res. 21 (2006) 2611-2616. |
[29] | E. Detsi, M.V.D. Schootbrugge, S. Punzhin, P.R. Onck, J.T.M.D. Hosson, Scr. Mater. 64 (2011) 319-322. |
[30] | L.H. Qian, M.W. Chen, Appl. Phys. Lett. 91 (2007), 083105. |
[31] | N.A. Senior, R.C. Newman, Nanotechnology 17 ( 2006) 2311-2316. |
[32] |
J. Erlebacher, Phys. Rev. Lett. 106 (2011), 225504.
DOI URL PMID |
[33] | M. Hakamada, M. Mabuchi, Mater. Lett. 62 (2008) 483-486. |
[34] | M. Hakamada, M. Mabuchi, J. Alloys. Compd. 479 (2009) 326-329. |
[35] |
Y.H. Tan, J.A. Davis, K. Fujikawa, N.V. Ganesh, A.V. Demchenko, K.J. Stine, J. Mater. Chem. 22 (2012) 6733-6745.
URL PMID |
[36] | M. Hakamada, M. Mabuchi, J. Mater. Res. 24 (2009) 301-304. |
[37] | K. Kolluri, M.J. Demkowicz, Acta Mater. 59 (2011) 7645-7653. |
[38] | Y.C.K. Chen, Y.S. Chu, J.M. Yi, I. McNulty, Q. Shen, P.W. Voorhees, D.C. Dunand, Appl. Phys. Lett. 96 (2010), 043122. |
[39] |
M.P. Klein, B.W. Jacobs, M.D. Ong, S.J. Fares, D.B. Robinson, V. Stavila, G.J. Wagner, I. Arslan, J. Am. Chem. Soc. 133 (2011) 9144-9147.
URL PMID |
[40] | Y.C.K.C. Wiegart, S. Wang, Y.S. Chu, W.J. Liu, I. McNulty, P.W. Voorhees, D.C. Dunand, Acta Mater. 60 (2012) 4972-4981. |
[41] | H. Dong, Y.Z. Chen, K. Wang, G.B. Shan, Z.R. Zhang, K. Huang, F. Liu, Scr. Mater. 177 (2020) 123-127. |
[42] | J. Erlebacher, J. Electrochem. Soc. 151 (2004) C614-C626. |
[43] | K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, J. Erlebacher, J. Electrochem. Soc. 149 (2002) B370-B377. |
[44] |
J.L. Wang, R. Xia, J.J. Zhu, Y. Ding, X. Zhang, Y.F. Chen, J. Mater. Sci. 47 (2012) 5013-5018.
DOI URL |
[45] |
S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, J. Weismüller, Phys. Rev. Lett. 97 (2006), 035504.
URL PMID |
[46] | T. Fujita, L.H. Qian, K. Inoke, J. Erlebacher, M.W. Chen, Appl. Phys. Lett. 92 (2008), 251902. |
[47] | X.K. Luo, R. Li, L. Huang, T. Zhang, Corros. Sci. 67 (2013) 100-108. |
[48] | A.A. El-Zoka, J.Y. Howe, R.C. Newman, D.D. Perovic, Acta Mater. 162 (2019) 67-77. |
[49] |
T. Fujita, T. Tokunaga, L. Zhang, D.W. Li, L.Y. Chen, S. Arai, Y. Yamamoto, A. Hirata, N. Tanaka, Y. Ding, M.W. Chen, Nano Lett. 14 (2014) 1172-1177.
URL PMID |
[50] | J.E. Burke, Trans. AIME 180 ( 1949) 73-91. |
[51] | H. Dong, Y.Z. Chen, K. Wang, G.B. Shan, Z.R. Zhang, K. Huang, F. Liu, Scr. Mater. 177 (2020) 123-127. |
[52] | G.B. Shan, Y.Z. Chen, Y.J. Li, C.Y. Zhang, H. Dong, Y.B. Cong, W.X. Zhang, L.K. Huang, T. Suo, F. Liu, Scr. Mater. 179 (2020) 1-5. |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[4] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[5] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[6] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[7] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[8] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[9] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[10] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[11] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[12] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[13] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[14] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[15] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||