J. Mater. Sci. Technol. ›› 2021, Vol. 67: 36-49.DOI: 10.1016/j.jmst.2020.06.051
• Research article • Previous Articles Next Articles
Xuewei Yana, Qingyan Xub,*(), Guoqiang Tiana, Quanwei Liua, Junxing Houa, Baicheng Liub
Received:
2020-05-05
Revised:
2020-06-07
Accepted:
2020-06-19
Published:
2021-03-20
Online:
2021-04-15
Contact:
Qingyan Xu
About author:
* E-mail address: scjxqy@mail.tsinghua.edu.cn (Q. Xu).Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting[J]. J. Mater. Sci. Technol., 2021, 67: 36-49.
Fig. 2. Schematic of macro-micro coupling calculation: (a) temperature interpolation between macro grid and micro grid; (b) modified CA capture algorithm in 2-D gridding.
Parameters | Values |
---|---|
Liquidus temperature (°C) | 1323 |
Solidus temperature (°C) | 1268 |
Latent heat (kJ·kg-1) | 90 |
Liquidus slope | -3.73 |
Solute partition coefficient | 0.562 |
Anisotropy coefficient ε | 0.03 [ |
Gibbs-Thomson coefficient Γ (K·m) | 3.65 × 10-7 [ |
Liquid diffusion coefficient DL (m2·s-1) | 1.73 × 10-9 [ |
Solid diffusion coefficient Ds (m2·s-1) | 1.16 × 10-12 [ |
Table 1 Thermophysical parameters of DZ24 superalloy.
Parameters | Values |
---|---|
Liquidus temperature (°C) | 1323 |
Solidus temperature (°C) | 1268 |
Latent heat (kJ·kg-1) | 90 |
Liquidus slope | -3.73 |
Solute partition coefficient | 0.562 |
Anisotropy coefficient ε | 0.03 [ |
Gibbs-Thomson coefficient Γ (K·m) | 3.65 × 10-7 [ |
Liquid diffusion coefficient DL (m2·s-1) | 1.73 × 10-9 [ |
Solid diffusion coefficient Ds (m2·s-1) | 1.16 × 10-12 [ |
Location | Emissivity of mold shell | Interface heat transfer coefficient (W·m-2·K-1) | Ambient temperature (°C) |
---|---|---|---|
Above ceramic beads | 0.4 | 0 | 1500 |
Within ceramic beads | 0 | 500 | 1100-325 |
Within coolant | 0 | 4000 | 250 |
Table 2 Parameters for the location-dependent boundary condition [13]
Location | Emissivity of mold shell | Interface heat transfer coefficient (W·m-2·K-1) | Ambient temperature (°C) |
---|---|---|---|
Above ceramic beads | 0.4 | 0 | 1500 |
Within ceramic beads | 0 | 500 | 1100-325 |
Within coolant | 0 | 4000 | 250 |
Fig. 6. Temperature field (a1-a5) and mushy zone (b1-b5) evolution of plate casting during DS process at a withdrawal rate 8 mm·min-1: (a1, b1) t = 15 s, fs = 2%; (a2, b2) t = 41 s, fs = 8%; (a3, b3) t = 115 s, fs = 20%; (a4, b4) t = 323 s, fs = 40%; (a5, b5) t =560 s, fs = 60%.
Fig. 8. Simulation results of grain morphologies for different transverse sections and EBSD orientation image maps of different samples: (a) simulation result for Section 1; (b) simulation result for Section 2; (c) IPF map for Sample I; (d) IPF map for Sample II.
Fig. 9. Experiment and simulation results of dendritic morphologies in different domains: (a1~d1) for Sample I; (a2~d2) for Sample II; (a1, c1 and a2, c2) for cross sections; (b1, d1 and b2, d2) for longitudinal sections; (a1, b1 and a2, b2) experiment results; (c1, d1 and c2, d2) simulation results.
Fig. 10. Coupling simulation between meso grain and micro dendrites in 3D space: (a) meso grain structures; (b) micro dendrites; (c and d) dendrites in cross section; (e) experiment result.
Fig. 11. Mushy zone evolution at different withdrawal rates, and the solid fractions are 5%, 10%, 20%, 30% 40% and 50%, respectively: (a1-a6) 6 mm·min-1; (b1-b6) 8 mm·min-1; (c1-c6) 10 mm·min-1; (d1-d6) 12 mm·min-1; (e1-e6) 16 mm·min-1; (f1-f6) 20 mm·min-1.
Fig. 13. Simulation results of grain structures at different withdrawal rates: (a) 6 mm·min-1; (b) 8 mm·min-1; (c) 10 mm·min-1; (d) 12 mm·min-1; (e) 16 mm·min-1; (f) 20 mm·min-1.
Fig. 14. Distributions of grain numbers and average deviation angle between the [001] orientation of grains and z axis at different withdrawal rates: (a) 6 mm·min-1; (b) 8 mm·min-1; (c) 10 mm·min-1; (d) 12 mm·min-1; (e) 16 mm·min-1; (f) 20 mm·min-1.
Fig. 15. Schematic of the competitive growth of dendrites with different orientations relative to the isothermal line: (a) vertical and tilting growth under the horizontal isothermal line; (b) vertical and tilting growth under the curving isothermal line; (c) converging relationship with tilting and tilting growth under the curving isothermal line; (d) diverging relationship with tilting and tilting growth under the curving isothermal line.
Fig. 16. Simulation results of dendrite growth at different withdrawal rates: (a) 6 mm·min-1; (b) 8 mm·min-1; (c) 10 mm·min-1; (d) 12 mm·min-1; (e) 16 mm·min-1; (f) 20 mm·min-1.
[1] |
B.H. Kear, E.R. Thompson, Science 208 (1980) 847-856.
DOI URL PMID |
[2] | F.R.N. Nabarro, Mater. Sci. Eng. A 184 (1994) 167-171. |
[3] | D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England, C. Daniel, Prog. Mater. Sci. 103(2019) 109-179. |
[4] | X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, H.Z. Fu, Mater. Charact. 61(2010) 7-12. |
[5] | D. Szeliga, K. Kubiak, M. Motyka, J. Sieniawski, Vacuum 131 (2016) 327-342. |
[6] | H.Z. Fu, X.G. Geng, Sci. Technol. Adv. Mater. 2(2001) 197-204. |
[7] | X.L. Zhang, Y.Z. Zhou, T. Jin, X.F. Sun, L. Liu, J. Mater. Sci.Technol. 29(2013) 879-883. |
[8] | M. Rappaz, Curr. Opin. Solid State Mater.Sci. 20(2016) 37-45. |
[9] | M. Konter, M. Thumann, J. Mater. Process.Technol. 117(2001) 386-390. |
[10] | L.D. Graham, B.L. Rauguth, US Patent No. 6443213, 2002. |
[11] | A.F. Giamei, J.G. Tschinkel, Metall. Trans. A 7 (1976) 1427-1434. |
[12] | K. Zhao, Y.H. Ma, L.H. Lou, J. Alloys Compd. 475(2009) 648-651. |
[13] | J.D. Miller, L. Yuan, P.D. Lee, T.M. Pollock, Acta Mater 69 (2014) 47-59. |
[14] | A. Kermannpur, N. Varahram, P. Davami, M. Rappaz, Metall. Mater. Trans. B 31(2000) 1293-1304. |
[15] | Y.Z. Lu, H.J. Xi, J. Shen, W. Zheng, G. Xie, L.H. Lou, J. Zhang, Acta Metall. Sin. 51(2015) 603-611. |
[16] | T.J. Fitzgerald, R.F. Singer, Metall. Mater. Trans. A 28 (1997) 1377-1383. |
[17] | A.J. Elliott, S. Tin, W.T. King, S.C. Huang, M.F.X. Gigliotti, T.M. Pollock, Metall.Mater. Trans. A 35 (2004) 3221-3231. |
[18] | A. Kermannpur, M. Mehrara, N. Varahram, P. Davami, Mater. Sci. Technol. 24(2008) 100-106. |
[19] | M.M. Franke, R.M. Hilbinger, A. Lohmüller, R.F. Singer, J. Mater. Process.Technol. 213(2013) 2081-2088. |
[20] | C.L. Brundidge, J.D. Miller, T.M. Pollock, Metall. Mater. Trans. A 42 (2011) 2723-2732. |
[21] | J.D. Miller, T.M. Pollock, Metall. Mater. Trans. A 45 (2014) 411-425. |
[22] | J.D. Miller, T.M. Pollock, Acta Mater. 78(2014) 23-36. |
[23] | A. Das, Z. Fan, Mater. Sci. Eng. A 365 (2004) 330-335. |
[24] | T. Takaki, M. Ohno, T. Shimokawabe, T. Aoki, Acta Mater. 81(2014) 272-283. |
[25] | D. Tourret, A. Karma, Acta Mater 82 (2015) 64-83. |
[26] | A. Pineau, G. Guillemot, D. Tourret, A. Karma, C.A. Gandin, Acta Mater. 155(2018) 286-301. |
[27] | M.F. Zhu, S.Y. Lee, C.P. Hong, Phys. Rev. E 69 (2004), 061610. |
[28] | R. Chen, Q.Y. Xu, B.C. Liu, J. Mater. Sci.Technol. 30(2014) 1311-1320. |
[29] | W.L. Wang, S. Luo, M.Y. Zhu, Metall. Mater. Trans. A 46 (2015) 396-406. |
[30] | M. Rappaz, C.A. Gandin, Acta Metall. Mater. 41(1993) 345-360. |
[31] | C.A. Gandin, M. Rappaz, Acta Metall. Mater. 42(1994) 2233-2246. |
[32] | C.A. Gandin, M. Rappaz, Acta Mater. 45(1997) 2187-2195. |
[33] | W. Wang, P.D. Lee, M. McLean, Acta Mater. 51(2003) 2971-2987. |
[34] | M.F. Zhu, D.M. Stefanescu, Acta Mater 55 (2007) 1741-1755. |
[35] | H. Yin, S.D. Felicelli, L. Wang, Acta Mater. 59(2011) 3124-3136. |
[36] | S. Luo, M.Y. Zhu, Comput. Mater. Sci. 71(2013) 10-18. |
[37] | H. Zhang, Q.Y. Xu, J. Mater. Process.Technol. 238(2016) 132-141. |
[38] | D. Pan, Q.Y. Xu, B.C. Liu, Acta Metall. Sin. 46(2010) 294-303. |
[39] | Q.Y. Xu, H. Zhang, B.C. Liu, China Foundry 11 (2014) 268-276. |
[40] | W. Kurz, B. Giovanola, R. Trivedi, Acta Metall. 34(1986) 823-830. |
[41] | D.X. Ma, A. Bührig-Polaczek, Metall. Mater. Trans. A 45 (2014) 1435-1444. |
[42] | N. Matan, D.C. Cox, P. Carter, M.A. Rist C.M.F. Rae R.C. Reed, Acta Mater. 47(1999) 1549-1563. |
[43] | L.N. Wang, Y. Liu, J.J. Yu, Y. Xu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A505(2009) 144-150. |
[44] | Y.Z. Zhou, A. Volek, N.R. Green, Acta Mater. 56(2008) 2631-2637. |
[45] | H.B. Dong, P.D. Lee, Acta Mater. 53(2005) 659-668. |
[46] | D. Walton, B. Chalmers, Trans. Metall. AIME 215 (1959) 447-457. |
[47] | T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, T. Aoki, Acta Mater. 118(2016) 230-243. |
[48] | J.C. Wang, C.W. Guo, J.J. Li, Z.J. Wang, Acta Metall. Sin. 54(2018) 657-668. |
[1] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[2] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[3] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[4] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[5] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[6] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[7] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[8] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[9] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[10] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[11] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[12] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[13] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[14] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[15] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||