J. Mater. Sci. Technol. ›› 2021, Vol. 60: 168-176.DOI: 10.1016/j.jmst.2020.06.010
• Research Article • Previous Articles Next Articles
Yanxin Qiaoa,*(), Daokui Xub,*(
), Shuo Wanga,b,c, Yingjie Mab, Jian Chena, Yuxin Wanga, Huiling Zhoua
Received:
2020-03-04
Revised:
2020-05-13
Accepted:
2020-06-12
Published:
2021-01-10
Online:
2021-01-22
Contact:
Yanxin Qiao,Daokui Xu
Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy[J]. J. Mater. Sci. Technol., 2021, 60: 168-176.
Fig. 1. SEM image of the etched Ti4211 alloy (a), EDS analysis of the α phase in the Ti4211 alloy (b), and EDS analysis of the β phase in the Ti4211 alloy (c).
Ti | Al | V | Mo | Fe | |
---|---|---|---|---|---|
α | 93.3 | 4.4 | 2.3 | - | - |
β | 78.7 | 2.5 | 7.8 | 6.0 | 5.0 |
Table 1 Chemical compositions of the α and β phases (wt.%) analyzed using EDS in Fig.1.
Ti | Al | V | Mo | Fe | |
---|---|---|---|---|---|
α | 93.3 | 4.4 | 2.3 | - | - |
β | 78.7 | 2.5 | 7.8 | 6.0 | 5.0 |
Fig. 2. (a) XRD patterns of the uncharged and hydrogen-charged Ti4211 alloy at different charging times, (b) section of XRD plots in (a) ranging from 33° to 43°.
Fig. 5. Nyquist (a) and Bode plots (b) of the charged and uncharged Ti4211 alloys in 3.5 wt.% NaCl solution. The data at 0 h were reproduced from the Ref. [5].
t (h) | Rs (Ω cm2) | Rp (Ω cm2) | Q (Ω-1 Sn cm-2) | n |
---|---|---|---|---|
0 | 8.71 ± 0.87 | 6.50 ± 0.35 × 105 | 2.56 ± 0.26 × 10-5 | 0.95 ± 0.01 |
1 | 11.69 ± 1.17 | 6.44 ± 0.14 × 105 | 4.37 ± 0.15 × 10-5 | 0.93 ± 0.01 |
4 | 12.49 ± 0.24 | 3.58 ± 0.52 × 105 | 3.25 ± 0.47 × 10-5 | 0.93 ± 0.02 |
24 | 7.32 ± 0.71 | 6.18 ± 0.76 × 104 | 1.44 ± 0.36 × 10-4 | 0.83 ± 0.03 |
Table 2 Parameters of equivalent circuit obtained by fitting the EIS spectra.
t (h) | Rs (Ω cm2) | Rp (Ω cm2) | Q (Ω-1 Sn cm-2) | n |
---|---|---|---|---|
0 | 8.71 ± 0.87 | 6.50 ± 0.35 × 105 | 2.56 ± 0.26 × 10-5 | 0.95 ± 0.01 |
1 | 11.69 ± 1.17 | 6.44 ± 0.14 × 105 | 4.37 ± 0.15 × 10-5 | 0.93 ± 0.01 |
4 | 12.49 ± 0.24 | 3.58 ± 0.52 × 105 | 3.25 ± 0.47 × 10-5 | 0.93 ± 0.02 |
24 | 7.32 ± 0.71 | 6.18 ± 0.76 × 104 | 1.44 ± 0.36 × 10-4 | 0.83 ± 0.03 |
t (h) | Ecorr (VSCE) | icorr (A /cm2) | ip (A /cm2) | Ep (VSCE) |
---|---|---|---|---|
0 | -0.36 | 4.91 × 10-8 | 4.75 × 10-6 | - |
1 | -0.51 | 6.97 × 10-8 | 5.15 × 10-6 | - |
4 | -0.34 | 1.82 × 10-7 | 6.73 × 10-6 | 1.4 |
24 | -0.25 | 7.75 × 10-7 | 2.01 × 10-5 | 1.2 |
Table 3 Corrosion parameters derived from the potentiodynamic polarization curves in Fig. 7.
t (h) | Ecorr (VSCE) | icorr (A /cm2) | ip (A /cm2) | Ep (VSCE) |
---|---|---|---|---|
0 | -0.36 | 4.91 × 10-8 | 4.75 × 10-6 | - |
1 | -0.51 | 6.97 × 10-8 | 5.15 × 10-6 | - |
4 | -0.34 | 1.82 × 10-7 | 6.73 × 10-6 | 1.4 |
24 | -0.25 | 7.75 × 10-7 | 2.01 × 10-5 | 1.2 |
Fig. 8. Morphologies of the Ti4211 sample hydrogen charged for 24 h after potentiodynamic polarization test: (a) corrosion morphology, (b) high magnification of the area marked by the red square in Fig. 8(a), and (c) three-dimensional (3D) optical micrographs.
[1] | E. Tal-Gutelmacher, D. Eliezer, JOM 57 (2005) 46-49. |
[2] | J.J. Dong, L. Fan, H.B. Zhang, L.K. Xu, L.L. Xue, Acta Metall, Sin. Engl. Lett. 33(2020) 595-604. |
[3] | S. Mironov, Y.S. Sato, H. Kokawa, J. Mater. Sci. Technol. 34(2018) 58-72. |
[4] | Y.G. Liu, M.Q. Li, J. Alloys Compd. 773(2019) 860-871. |
[5] | Y.X. Qiao, D.K. Xu, S. Wang, Y.J. Ma, J. Chen, Y.X. Wang, H.L. Zhou, Metals 9 (2019) 1213. |
[6] | S.S. Huang, J.H. Zhang, Y.J. Ma, S.L. Zhang, S.S. Youssef, M. Qi, H. Wang, J.K. Qiu, D. S. Xu, J.F. Lei, R. Yang, J. Alloys Compd. 791(2019) 575-585. |
[7] | S.S. Huang, Y.J. Ma, Z.Y. Ping, S.L. Zhang, R. Yang, Acta Metall. Sin. 55(2019) 741-750 (in Chinese). |
[8] |
Z.L. Liang, Z.G. Sun, W.S. Zhang, S.K. Wu, H. Chang, J. Alloys Compd. 782(2019) 1041-1048.
DOI URL |
[9] | Q. Zhang, J. Chen, L. Wang, H. Tan, X. Lin, W. Huang, J. Mater. Sci. Technol. 32(2016) 381-386. |
[10] | Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Corros. Sci. 103(2016) 50-65. |
[11] | H.G. Nelson, Metall. Trans. 4(1973) 364-367. |
[12] | X.Y. Chen, R.R. Chen, X. Ding, H.Z. Fang, X.Z. Li, H.S. Ding, Y.Q. Su, J.J. Guo, H.Z. Fu, Energy 166 (2019) 587-597. |
[13] | H.G. Nelson, D.P. Williams, J.E. Stein, Metall. Mater. Trans. B 3 (1972) 473-479. |
[14] |
J.W. Kim, C.C. Tasan, Int. J. Hydrog. Energy 44 (2019) 6333-6343.
DOI URL |
[15] |
W. Wu, J. Liu, Z.Y. Liu, L.Y. Cui, C.W. Du, X.G. Li, J. Electroanal. Chem. 822(2018) 23-32.
DOI URL |
[16] | H. Fred, P. Pasu, M. Kevin, G. Gerald, S. David, JOM 57 (2005) 20-26. |
[17] |
C. Blanco-Pinzon, Z. Liu, K. Voisey, F.A. Bonilla, P. Skeldon, G.E. Thompson, J. Piekoszewski, A.G. Chmielewski, Corros. Sci. 47(2005) 1251-1269.
DOI URL |
[18] | B.J. Wang, J.Y. Luan, D.K. Xu, J. Sun, C.Q. Li, E.H. Han, Acta Metall, Sin. Engl. Lett. 32(2019) 1-9. |
[19] | H. Numakura, M. Koiwa, Acta Metall. 32(1984) 1799-1807. |
[20] |
B.J. Wang, D.K. Xu, S.D. Wang, E.H. Han, Front. Mech. Eng. China 14 (2019) 113-127.
DOI URL |
[21] |
B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, E.H. Han, Int. J. Fatigue 120 (2019) 46-55.
DOI URL |
[22] | M.M. Tsai, J.M. Howe, Metall. Mater. Trans. A 26 (1995) 2219-2226. |
[23] | M.Q. Li, W.F. Zhu, T.K. Zhang, H.L. Hou, Z.Q. Li, Rare Metal Mater. Eng. 39(2010) 1-5. |
[24] | D.S. Shih, I.M. Robertson, H.K. Birnbaum, Acta Metall. 36(1988) 111-124. |
[25] | S.S. Shishvan, G. Csanyi, V.S. Deshpande, J. Mech. Phys. Solids 134 (2020), 103740. |
[26] | B.J. Wang, D.K. Xu, L.Y. Sheng, E.H. Han, J. Sun, J. Mater. Sci. Technol. 35(2019) 2423-2429. |
[27] | C.N. Panagopoulos, A.S. El-Amoush, K.G. Georgarakis, J. Alloys Compd. 392(2005) 159-164. |
[28] | L.Q. Yin, Y.Y. Liu, N.W. Dai, S.S. Qian, Y.T. Wan, J. Wu, J. Li, Y.M. Jiang, J. Electrochem. Soc. 165(2018) C1007-C1016. |
[29] | D. Eliezer, E. Tal-Gutelmacher, C.E. Cross, T. Boellinghaus, Mater. Sci. Eng. A 433 (2006) 298-304. |
[30] | D.J. Blackwood, L.M. Peter, H.E. Bishop, P.R. Chalker, D.E. Williams, Electrochim. Acta 34 (1989) 1401-1403. |
[31] | J.W. Kim, E. Plancher, C.C. Tasan, Acta Mater. 188(2020) 686-696. |
[32] | S.P. Liu, Z. Zhang, J. Xia, Y.G. Chen, Adv. Eng. Mater. 22(2020), 1901182. |
[33] | L. Yan, S. Ramamurthy, J.J. Noël, D.W. Shoesmith, Electrochim. Acta 52 (2006) 1169-1181. |
[34] | F.W. Chen, Y. Gu, G.L. Xu, Y. Cui, H. Chang, L. Zhou, Mater. Des. 185(2020), 108251. |
[35] | C.L. Li, P.L. Narayana, N.S. Reddy, S.W. Choi, J.T. Yeom, J.K. Hong, C.H. Park, J. Mater. Sci. Technol. 35(2019) 907-916. |
[36] |
M.O. Bodunrin, L.H. Chown, J.W. van der Merwe, K.K. Alaneme, Corros. Eng. Sci. Technol. 54(2019) 637-648.
DOI URL |
[37] | J.V. Scanlan, G.J.G. Chambers, Proc. of an International Conference, Elsevier, the Institute of Metals, the Metallurgical Society of Aime, and the American Society for Metals in Association with the Japan Institute of Metals and the Academy of Sciences, USSR, Th, 2013. |
[38] | M.O. Bodunrin, L.H. Chown, J.W. van der Merwe, K.K. Alaneme, Mater. Corros. 69(2018) 770-780. |
[39] | Y.X. Qiao, X. Cai, J. Cui, H.B. Li, Adv. Mater. Sci. Eng. 2016 (2016), 6065481. |
[40] | W.Y. Chu, L.J. Qiao, J.X. Li, Y.J. Su, Y. Yan, Y. Bai, X.C. Ren, H.Y. Huang, Hydrogen Embrittlement and Stress Corrosion Cracking, Science Press. Beijing, Science Press, 2013, pp. 170-184. |
[41] | H. Liu, R. Liu, I. Ullah, S.Y. Zhang, Z.Q. Sun, L. Ren, K. Yang, J. Mater. Sci. Technol. 48(2020) 130-139. |
[42] | M.D. Pustode, V.S. Raja, B. Dewangan, N. Paulose, Mater. Des. 86(2015) 841-847. |
[43] | N. Pushilina, A. Panin, M. Syrtanov, E. Kashkarov, V. Kudiiarov, O. Perevalova, R. Laptev, A. Lider, A. Koptyug, Metals 8 (2018) 301. |
[44] | E. Conforto, D. Caillard, Acta Mater. 55(2007) 785-798. |
[45] |
H. Numakura, M. Koiwa, Acta Metall. 32(1984) 1799-1807.
DOI URL |
[46] |
B.G. Pound, Acta Mater. 45(1997) 2059-2068.
DOI URL |
[47] |
D. Eliezer, E. Tal-Gutelmacher, C.E. Cross, T. Boellinghaus, Mater. Sci. Eng. A 421 (2006) 200-207.
DOI URL |
[48] |
B.G. Pound, Acta Metall. Mater. 42(1994) 1551-1559.
DOI URL |
[49] | T.K. Zhu, M.Q. Li, J. Alloys. Compd. 481(2009) 480-485. |
[50] |
P. Sun, Z.Z. Fang, M. Koopman, J. Paramore, K.S.R. Chandran, Y. Ren, J. Lu, Acta Mater. 84(2015) 29-41.
DOI URL |
[51] |
F.D. Manchester, A. San-Martin, OH, 2000.
URL PMID |
[52] |
L.S. Luo, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Alloys Compd. 425(2006) 140-144.
DOI URL |
[53] | H. Berthelemy, Lyon France, 2006. |
[54] | D.P. Williams, H.G. Nelson, Metall. Trans. 3(1972) 2107-2113. |
[55] | N.B. Pilling, R.E. Bedworth, Annual General Meeting, Annual General Meeting, vol. XXIX 1923, pp. 529-591, London. |
[56] | C.C. Shen, T.P. Perng, Acta Mater. 55(2007) 1053-1058. |
[57] | T.K. Zhu, M.Q. Li, Mater. Charact. 62(2011) 724-729. |
[58] |
J.Q. Li, X. Lin, P.F. Guo, M.H. Song, W.D. Huang, Corros. Sci. 142(2018) 161-174.
DOI URL |
[59] | Z.B. Wang, H.X. Hu, C.B. Liu, Y.G. Zheng, Electrochim. Acta 135 (2014) 526-535. |
[60] | S. Tamilselvi, V. Raman, N. Rajendran, J. Appl. Electrochem. 40(2010) 285-293. |
[61] | Y.X. Qiao, Z.H. Tian, X. Cai, J. Chen, Y.X. Wang, Q.N. Song, H.B. Li, Tribol. Lett. 67(2019) 1. |
[62] | A. Carnot, I. Frateur, S. Zanna, B. Tribollet, I. Dubois-Brugger, P. Marcus, Corros. Sci. 45(2003) 2513-2524. |
[63] | C. Hitz, A. Lasia, J. Electroanal. Chem. 500(2001) 213-222. |
[64] | C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, Electrochim. Acta 51 (2006) 4080-4088. |
[65] | Y.X. Qiao, Y.G. Zheng, W. Ke, P.C. Okafor, Corros. Sci. 51(2009) 979-986. |
[66] |
Z. Grubač, M. Metikos-Huković, J. Electroanal. Chem. 565(2004) 85-94.
DOI URL |
[67] | C.N. Cao, Theory of Electrochemical, Chemical Industry Press, Beijing, 2004, pp. 16-24. |
[68] | N.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, C. Yang, Corros. Sci. 111(2016) 703-710. |
[69] | N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, M.L. Wu, Corros. Sci. 102(2016) 484-489. |
[70] | X. Li, Y.C. Dong, Z.H. Dan, C. Hui, Z.G. Fang, Y.H. Guo, Acta Metall. Sin. 55(2019) 967-975 (in Chinese). |
[71] | S. Tamilselvi, V. Raman, N. Rajendran, Electrochim. Acta 52 (2006) 839-846. |
[72] |
W. Wu, Z.P. Zeng, X.Q. Cheng, X.G. Li, B. Liu, J. Mater. Eng. Perform. 26(2017) 6075-6086.
DOI URL |
[73] | S.Ld. Assis, S. Wolynec, I. Costa, Electrochim. Acta 51 (2006) 1815-1819. |
[74] | R. Singh, M. Martin, N.B. Dahotre, Surf. Eng. 21(2013) 297-306. |
[75] |
Q. Yang, J.L. Luo, Electrochim. Acta 45 (2000) 3927-3937.
DOI URL |
[76] | E. Tal-Gutelmacher, D. Eliezer, J. Alloys Compd. 404-406(2005) 613-616. |
[77] | G.A. Young, J.R. Scully, Scr. Metall. Mater. 28(1993) 507-512. |
[78] | T.J. Zhang, Rare Metal Mater. Eng. 28(1990) 75-80. |
[79] |
D.W. Shoesmith, B.M. Ikeda, Canada, 1997.
URL PMID |
[80] | R. Nishimura, J. Shirono, A. Jonokuchi, Corros. Sci. 50(2008) 2691-2697. |
[1] | Wei Zhao, Tiantian She, Jingyi Zhang, Guoxiang Wang, Sujuan Zhang, Wei Wei, Gang Yang, Lili Zhang, Dehua Xia, Zhipeng Cheng, Haibao Huang, Dennis Y.C. Leung. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 18-29. |
[2] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
[3] | Di Wan, Yan Ma, Binhan Sun, Seyed Mohammad Javad Razavi, Dong Wang, Xu Lu, Wenwen Song. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J. Mater. Sci. Technol., 2021, 85(0): 30-43. |
[4] | SeungHyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu. The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 85(0): 62-75. |
[5] | Boxin Wei, Jin Xu, Qi Fu, Qingyu Qin, Yunlong Bai, Cheng Sun, Chuan Wang, Zhenyao Wang, Wei Ke. Effect of sulfate-reducing bacteria on corrosion of X80 pipeline steel under disbonded coating in a red soil solution [J]. J. Mater. Sci. Technol., 2021, 87(0): 1-17. |
[6] | Hengming Huang, Kan Hu, Chen Xue, Zhiliang Wang, Zhenggang Fang, Ling Zhou, Menglong Sun, Zhongzi Xu, Jiahui Kou, Lianzhou Wang, Chunhua Lu. Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2021, 87(0): 207-215. |
[7] | Qiang Wang, Liangcai Zeng, Tengfei Gao, Hui Du, Xinwang Liu. On the room-temperature tensile deformation behavior of a cast dual-phase high-entropy alloy CrFeCoNiAl0.7 [J]. J. Mater. Sci. Technol., 2021, 87(0): 29-38. |
[8] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[9] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[10] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[11] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[12] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[13] | Xin Wei, Junhua Dong, Nan Chen, Amar Prasad Yadav, Qiying Ren, Jie Wei, Changgang Wang, Rongyao Ma, Wei Ke. Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment [J]. J. Mater. Sci. Technol., 2021, 66(0): 46-56. |
[14] | Na Guo, Yanan Wang, Xinrui Hui, Qianyu Zhao, Zhenshun Zeng, Shuai Pan, Zhangwei Guo, Yansheng Yin, Tao Liu. Marine bacteria inhibit corrosion of steel via synergistic biomineralization [J]. J. Mater. Sci. Technol., 2021, 66(0): 82-90. |
[15] | Jiuyi Li, Xiankang Zhong, Tianguan Wang, Tan Shang, Junying Hu, Zhi Zhang, Dezhi Zeng, Duo Hou, Taihe Shi. Synergistic effect of erosion and hydrogen on properties of passive film on 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 67(0): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||