J. Mater. Sci. Technol. ›› 2021, Vol. 62: 1-10.DOI: 10.1016/j.jmst.2020.05.034
• Research Article • Next Articles
Jiachen Zhang, Lin Liu*(), Taiwen Huang*(
), Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu
Received:
2020-03-03
Revised:
2020-05-26
Accepted:
2020-05-29
Published:
2021-01-30
Online:
2021-02-01
Contact:
Lin Liu,Taiwen Huang
About author:
taiwen h@nwpu.edu.cn (T. Huang).Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging[J]. J. Mater. Sci. Technol., 2021, 62: 1-10.
Fig. 1. (a) The typical microstructure revealed by TEM with an inset selected-area electron diffraction pattern taken along the [100] zone axis. (b) The X-ray diffraction peak (asymmetric (400) plane reflection) revealing two overlapping peaks corresponding to γ and γ′ phases. (c) The normalised PSD for γ′ precipitates is in comparation with the predictions of the LSW model (black solid line) and the TIDC model (red dashed line).
Fig. 2. (a) APT reconstruction of the tip from the alloy sample after heat treatment. (b) The compositional profile across the γ/γ′ interface for the solutes Mo, Ti, Cr, Al, W, Ta, Co, Re. The compositional width of the interface, measured according to Cr concentration distribution, has been marked.
Cr | Co | Mo | Re | Al | Ti | Ta | W | Ni | |
---|---|---|---|---|---|---|---|---|---|
γ | 24.47 | 14.15 | 0.86 | 1.8 | 2.94 | 0.63 | 0.21 | 2.03 | 52.91 |
γ′ | 2.42 | 4.12 | 0.38 | 0.11 | 14.58 | 4.68 | 2.27 | 1.92 | 69.5 |
Table 1 Elemental concentration distribution in γ/γ′ phases of the alloy (atomic fraction, at.%).
Cr | Co | Mo | Re | Al | Ti | Ta | W | Ni | |
---|---|---|---|---|---|---|---|---|---|
γ | 24.47 | 14.15 | 0.86 | 1.8 | 2.94 | 0.63 | 0.21 | 2.03 | 52.91 |
γ′ | 2.42 | 4.12 | 0.38 | 0.11 | 14.58 | 4.68 | 2.27 | 1.92 | 69.5 |
Fig. 3. γ′ microstructure evolution in the alloy subjects to isothermal aging periods of 100, 200, 500, 1000 and 2000 h at 900, 950 and 1000 °C. γ′ precipitates coalescence is labelled by green dotted circle.
Fig. 5. The evolution of scaled PSDs for γ′ precipitates compared with the prediction of the LSW model (black solid line) and the TIDC model (red dashed line).
T (°C) | HT (%) | 2000 h (%) |
---|---|---|
900 | 0.146 | 0.139 |
950 | 0.178 | 0.152 |
1000 | 0.221 | 0.181 |
Table 2 Measured lattice misfit magnitude, |δ| at 900 °C, 950 °C and 1000 °C by high resolution XRD, the X-ray diffraction peaks are not shown here.
T (°C) | HT (%) | 2000 h (%) |
---|---|---|
900 | 0.146 | 0.139 |
950 | 0.178 | 0.152 |
1000 | 0.221 | 0.181 |
Fig. 6. Plot showing linear fit of average precipitate size (r3, in nm3) vs aging time (t, in s) during isothermal aging at 900, 950 and 1000 °C. The corresponding LSW rate constant (K, in nm3·s-1) and coefficient of determination (R2) are also labelled.
T (°C) | K (nm3 s-1) | DAl (m2 s-1) | KAl (nm3 s-1) | DRe (m2 s-1) | KRe (nm3 s-1) |
---|---|---|---|---|---|
900 | 3.18 | 7.6×10-16 | 28.64 | 3.6×10-18 | 4.33 |
950 | 12.76 | 2.3×10-15 | 63.47 | 1.1×10-17 | 10.92 |
1000 | 42.57 | 6.8×10-15 | 112.63 | 2.8×10-17 | 21.5 |
Table 3 Coarsening rate K calculated by coarsening exponent, parameters from Al and Re. The diffusivity of Al and Re at corresponding temperatures (°C) are also calculated according to equations from Janssen [13] and Karunaratne [33].
T (°C) | K (nm3 s-1) | DAl (m2 s-1) | KAl (nm3 s-1) | DRe (m2 s-1) | KRe (nm3 s-1) |
---|---|---|---|---|---|
900 | 3.18 | 7.6×10-16 | 28.64 | 3.6×10-18 | 4.33 |
950 | 12.76 | 2.3×10-15 | 63.47 | 1.1×10-17 | 10.92 |
1000 | 42.57 | 6.8×10-15 | 112.63 | 2.8×10-17 | 21.5 |
Fig. 7. Plot showing linear fit of average precipitate size (r2, nm2) vs aging time (t, s) during isothermal aging at 900, 950 and 1000 °C. The corresponding TIDC rate constant (k, in nm2·s-1) and coefficient of determination (R2) are also labelled.
T (°C) | $\tilde D$ (m2 s-1) | D in Ni (m2 s-1) | D in Ni3Al (m2 s-1) |
---|---|---|---|
900 | 8.85×10-17 | 7.61×10-16 | 6.47×10-17 |
950 | 3.73×10-16 | 2.38×10-15 | 2.33×10-16 |
1000 | 1.34×10-15 | 6.81×10-15 | 7.56×10-16 |
Table 4 Values of the “effective” diffusion coefficient $\tilde D$, calculated by the Eq. (12), compared with diffusion coefficient of Al in Ni and Ni3Al calculated by the equations from Janssen [13] and Ikeda [12], respectively.
T (°C) | $\tilde D$ (m2 s-1) | D in Ni (m2 s-1) | D in Ni3Al (m2 s-1) |
---|---|---|---|
900 | 8.85×10-17 | 7.61×10-16 | 6.47×10-17 |
950 | 3.73×10-16 | 2.38×10-15 | 2.33×10-16 |
1000 | 1.34×10-15 | 6.81×10-15 | 7.56×10-16 |
Fig. 8. PSDs for Ni-Al-Cr-Re aged for 0 h (a) and 264 h (b) at 800 °C [40], PSDs for investigated alloy for HT state (c) and aged for 500 h, 1000 h, 2000 h at 950 °C.
T (°C) | Stage i (h) | Stage ii (h) | Stage iii (h) | Stage iv (h) |
---|---|---|---|---|
900 | Before HT | 0-1000 | 1000-2000 | - |
950 | Before HT | 0-500 | 500-1000 | 1000-2000 |
1000 | Before HT | 0-200 | 200-500 | 500-2000 |
Table 5 Duration of each stage at different temperatures, determined by PSDs evolution.
T (°C) | Stage i (h) | Stage ii (h) | Stage iii (h) | Stage iv (h) |
---|---|---|---|---|
900 | Before HT | 0-1000 | 1000-2000 | - |
950 | Before HT | 0-500 | 500-1000 | 1000-2000 |
1000 | Before HT | 0-200 | 200-500 | 500-2000 |
Fig. 10. (a) SEM images for experimental alloy after homogenized at 1300 °C for 24 h followed by water quench, (b) the corresponding PSD for experimental alloy before HT stage.
[1] | T. Philippe, P.W. Voorhees, Acta Mater. 61 (2013) 4237-4244. |
[2] | I.M. Lifshitz, Vv. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. |
[3] | V.C. Wagner, Zeitschrift Für Elektrochemie Berichte Der Bunsengesellschaft Für Phys. Chemie 65 (1961) 581-591. |
[4] |
A.J. Ardell, Acta Mater. 58 (2010) 4325-4331.
DOI URL |
[5] | A.J. Ardell, Acta Metall. 20 (1972) 61-71. |
[6] |
A.J. Ardell, V. Ozolins, Nat. Mater. 4 (2005) 309-316.
DOI URL PMID |
[7] | X. Li, N. Saunders, A.P. Miodownik, Metall. Trans. A Phys. Metall. Mater. Sci. 33 (2002) 3367-3374. |
[8] | Y. Wu, Y. Liu, C. Li, X. Xia, J. Wu, H. Li, J. Alloys. Compd. 771 (2019) 526-533. |
[9] | R. Folch, M. Plapp, Phys. Rev. E - Stat.Nonlinear Soft Matter Phys. 72 (2005) 1-27. |
[10] | C. Pareige-Schmuck, F. Soisson, D. Blavette, Mater. Sci. Eng. A 250 (1998) 99-103. |
[11] | C.J. Kuehmann, P.W. Voorhees, Metall. Trans. A Phys. Metall. Mater. Sci. 27 (1996) 937-942. |
[12] | T. Ikeda, A. Almazouzi, H. Numakura, M. Koiwa, W. Sprengel, H. Nakajima, Acta Mater. 46 (1998) 5369-5376. |
[13] | M.M.P. Janssen, Metall. Trans. 4 (1973) 1623-1633. |
[14] | J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, H.L. Fraser, Acta Mater. 57 (2009) 2538-2549. |
[15] | L. Luo, C. Ai, Y. Ma, S. Li, Y. Pei, S. Gong, Mater. Charact. 142 (2018) 27-38. |
[16] | J. Yi, Y. Jia, Y. Zhao, Z. Xiao, K. He, Q. Wang, M. Wang, Z. Li, Acta Mater. 166 (2019) 261-270. |
[17] | M. Yang, H. Chen, A. Orekhov, Q. Lu, X. Lan, K. Li, S. Zhang, M. Song, Y. Kong, D. Schryvers, Y. Du, Mater. Sci. Eng. A 774 (2020), 138776. |
[18] | F. Diologent, P. Caron, T. D’Almeida, A. Jacques, P. Bastie, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 200 (2003) 346-351. |
[19] | P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, R.C. Reed, Acta Mater. 125 (2017) 156-165. |
[20] | P.P. Camus, D.J. Larson, Appl. Surf. Sci. 76-77 (1994) 416-423. |
[21] | S. Tang, L.K. Ning, T.Z. Xin, Z. Zheng, J. Mater. Sci. Technol. 32 (2016) 172-176. |
[22] | D.J. Rowenhorst, J.P. Kuang, K. Thornton, P.W. Voorhees, Acta Mater. 54 (2006) 2027-2039. |
[23] | S.G. Kim, Acta Mater. 55 (2007) 6513-6525. |
[24] |
K.G. Wang, X. Ding, K. Chang, L.Q. Chen, J. Appl. Phys. 107 (2010).
DOI URL PMID |
[25] | Y.Y. Qiu, J. Mater. Sci. 31 (1996) 4311-4319. |
[26] | S. Gao, J. Hou, F. Yang, Y. Guo, L. Zhou, J. Alloys. Compd. 729 (2017) 903-913. |
[27] | C. Liu, Y. Li, L. Zhu, S. Shi, S. Chen, S. Jin, Mater. Chem. Phys. 217 (2018) 23-30. |
[28] | L. Xu, C.G. Tian, C.Y. Cui, Y.F. Gu, X.F. Sun, Mater. Sci. Technol. 30 (2014) 962-967. |
[29] | H.A. Calderon, P.W. Voorhees, J.L. Murray, G. Kostorz, Acta Metall. Mater. 42 (1994) 991-1000. |
[30] | L. Rougier, A. Jacot, C.A. Gandin, P. di Napoli, P.Y. Théry, D. Ponsen, V. Jaquet, Acta Mater. 61 (2013) 6396-6405. |
[31] | A.J. Ardell, Scr. Mater. 66 (2012) 423-426. |
[32] | J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28 (1958) 258-267. |
[33] | M.S.A. Karunaratne, P. Carter, R.C. Reed, Mater. Sci. Eng. A 281 (2000) 229-233. |
[34] | D. McLean, Met. Sci. 18 (1984) 249-256. |
[35] | A.J. Ardell, Acta Mater. 61 (2013) 7828-7840. |
[36] | A.J. Ardell, Acta Metall. 16 (1968) 511-516. |
[37] | E.Y. Plotnikov, Z. Mao, R.D. Noebe, D.N. Seidman, Scr. Mater. 70 (2014) 51-54. |
[38] | A.M. Gusak, G.V. Lutsenko, K.N. Tu, Acta Mater. 54 (2006) 785-791. |
[39] | W. Sun, Acta Mater. 55 (2007) 313-320. |
[40] | K.E. Yoon, R.D. Noebe, D.N. Seidman, Acta Mater. 55 (2007) 1145-1157. |
[41] | Q. Chen, J. Jeppsson, J. Ågren, Acta Mater. 56 (2008) 1890-1896. |
[1] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[2] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[3] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[4] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[5] | Jia Sun, Min Qi, Jinhu Zhang, Xuexiong Li, Hao Wang, Yingjie Ma, Dongsheng Xu, Jiafeng Lei, Rui Yang. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 98-108. |
[6] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[7] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[8] | Bing Yang, Gang He, Wenhao Wang, Yongchun Zhang, Chong Zhang, Yufeng Xia, Xiaofen Xu. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits [J]. J. Mater. Sci. Technol., 2021, 70(0): 49-58. |
[9] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[10] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[11] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[12] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[13] | Haoqiang Zhang, Lin Liu, Zhiliang Pei, Nanlin Shi, Jun Gong, Chao Sun. An effective strategy towards construction of CVD SiC fiber-reinforced superalloy matrix composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 179-185. |
[14] | Jingchen Li, Liangliang Wei, Jian He, Hao Chen, Hongbo Guo. The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 63-72. |
[15] | S.D. Ji, Q. Wen, Z.W. Li. A novel friction stir diffusion bonding process using convex-vortex pin tools [J]. J. Mater. Sci. Technol., 2020, 48(0): 23-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||