J. Mater. Sci. Technol. ›› 2020, Vol. 58: 63-72.DOI: 10.1016/j.jmst.2020.03.054
• Research Article • Previous Articles Next Articles
Jingchen Lia, Liangliang Weia,*(), Jian Heb,c, Hao Chend, Hongbo Guoa,b,c,*(
)
Received:
2020-02-03
Accepted:
2020-03-19
Published:
2020-12-01
Online:
2020-12-17
Contact:
Liangliang Wei,Hongbo Guo
Jingchen Li, Liangliang Wei, Jian He, Hao Chen, Hongbo Guo. The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy[J]. J. Mater. Sci. Technol., 2020, 58: 63-72.
Al | Mo | Ta | Cr | Re | Y | Ni |
---|---|---|---|---|---|---|
16.5 | 8.7 | 0.8 | 2.3 | 0.2 | 0.03 | Bal. |
Table 1 The chemical compositions (in at.%) of IC21 alloy substrate.
Al | Mo | Ta | Cr | Re | Y | Ni |
---|---|---|---|---|---|---|
16.5 | 8.7 | 0.8 | 2.3 | 0.2 | 0.03 | Bal. |
Fig. 2. (a) BSE micrograph of the as-electroplated Ni/ NiRe/ Pt tri-layer coating; (b) higher magnification micrograph of the interface of electroplated layers.
Fig. 4. (a) SEM cross-sectional images of the as-prepared Re modified β-(Ni,Pt)Al coating; (b) higher magnification of layer 1 in Fig. 4(a); (c) higher magnification of layer 2 in Fig. 4(a); (d) higher magnification of layer 3 in Fig. 4(a); (e) Re element mapping of layer 2 in Fig. 4(c); (f) Mo element mapping of layer 3 in Fig. 4(d).
Fig. 8. SEM micrographs of surfaces of the coatings after 300 h oxidation at 1100 °C: (a) β-(Ni,Pt)Al coating; (b) Re modified β-(Ni,Pt)Al coating; (c) High magnification (2000×) of the spallation area in Fig. 8(a); (d) High magnification (4000×) of the spallation area in Fig. 8(a).
Fig. 9. BSE micrographs of cross-sections of the coatings after 300 h oxidation at 1100 °C: (a) Re modified β-(Ni,Pt)Al coating; (b) β-(Ni,Pt)Al coating; (c) and (d) the local micrograph with high magnification of the oxide scales in (a) and (b), respectively.
Fig. 10. EDS composition profiles of: (a) Pt, Cr, Re and Mo; (b) Ni and Al measured across the oxidized Re modified β-(Ni,Pt)Al coating/IC21 substrate.
Coating types | Ni | Mo | Re | Al | Cr |
---|---|---|---|---|---|
β-(Ni,Pt)Al coating | Bal. | 40.3 | 0.0 | 8.0 | 0.0 |
Re modified β-(Ni,Pt)Al coating | Bal. | 55.8 | 22.4 | 0.0 | 4.1 |
Table 2 Average chemical compositions of the precipitates in the β-(Ni,Pt)Al coating and the Re modified β-(Ni,Pt)Al coating after 300 h oxidation calculated from EPMA point probe spectra at six different points in each coating marked in Fig. 9(a) and (b) (in at.%).
Coating types | Ni | Mo | Re | Al | Cr |
---|---|---|---|---|---|
β-(Ni,Pt)Al coating | Bal. | 40.3 | 0.0 | 8.0 | 0.0 |
Re modified β-(Ni,Pt)Al coating | Bal. | 55.8 | 22.4 | 0.0 | 4.1 |
Fig. 12. TEM results of the precipitate in the oxidized Re modified β-(Ni,Pt)Al coating: (a) SAED of the precipitate; (b) micrograph of the A: coating and B: the precipitate.
Fig. 14. EBSD patterns of the MoRe precipitate in the Re modified β-(Ni,Pt)Al coating after 300 h oxidation: (a) and (b) BSE images of the precipitate; (c) grain boundary map: red zone and yellow zone mainly containing Ni and Mo, respectively.
Al | Ni | Cr | Mo | Pt | Re |
---|---|---|---|---|---|
23.2 | Bal. | 1.0 | 3.8 | 3.2 | 0.5 |
Table 3 Average chemical compositions of the boxed zone marked in Fig. 9(a) (in at.%).
Al | Ni | Cr | Mo | Pt | Re |
---|---|---|---|---|---|
23.2 | Bal. | 1.0 | 3.8 | 3.2 | 0.5 |
Fig. 15. Plots of phase fraction and elemental compositions of all phases in the Re modified β-(Ni,Pt)Al coating versus temperature with the certain composition in Table 3 obtained from Thermo-Calc using TCNi8 database: (a) volume fraction of all phases; (b) mole percentage of elements in γ′-NiAl phase (c) mole percentage of elements in β-NiAl; (d) mole percentage of elements in Mo(Re).
[1] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
URL PMID |
[2] | B. Gleeson, J. Propul, Power 22 (2006) 375-383. |
[3] | J.A. Haynes, B.A. Pint, Y. Zhang, I.G. Wright, Surf. Coat. Technol. 202 (2007) 730-734. |
[4] | J.A. Haynes, B.A. Pint, Y. Zhang, I.G. Wright, Surf. Coat. Technol. 204 (2009) 816-819. |
[5] | R.C. Reed, R.T. Wu, M.S. Hook, C.M.F. Rae, R.G. Wing, Mater. Sci. Technol. 25 (2013) 276-286. |
[6] | V. Deodeshmukh, B. Gleeson, Surf. Coat. Technol. 202 (2007) 643-647. |
[7] | H. Lai, P. Knutsson, K. Stiller, Mater. High Temp. 28 (2011) 302-308. |
[8] | E.J. Felten, F.S. Pettit, Oxid. Met. 10 (1976) 189-223. |
[9] | B. Gleeson, N. Mu, S. Hayashi, J. Mater. Sci. 44 (2009) 1704-1710. |
[10] | P.Y. Hou, T. Izumi, B. Gleeson, Oxid. Met. 72 (2009) 109-124. |
[11] | E.J. Felten, Oxid. Met. 10 (1976) 23-28. |
[12] | G.J. Tatlock, T.J. Hurd, Oxid. Met. 22 (1984) 201-226. |
[13] | Y. Cadoret, D. Monceau, M.P. Bacos, P. Josso, V. Maurice, P. Marcus, Oxid. Met. 64 (2005) 185-205. |
[14] | S. Salam, P.Y. Hou, Y.D. Zhang, H. Lan, H.F. Wang, C. Zhang, Z.G. Yang, Corros. Sci. 89 (2014) 318-325. |
[15] | R. Swadzba, L. Swadzba, J. Wiedermann, M. Hetmanczyk, B. Witala, Oxid. Met. 82 (2014) 195-208. |
[16] | Z. Zhou, H. Peng, L. Zheng, H. Guo, S. Gong, Surf. Coat. Technol. 304 (2016) 108-116. |
[17] | Y. Liu, Q. Wu, S. Li, Y. Ma, S. Gong, Mater. Sci. Forum 747-748 (2013) 575-581. |
[18] | X. Tu, H. Peng, L. Zheng, W. Qi, J. He, H. Guo, S. Gong, Appl. Surf. Sci. 325 (2015) 20-26. |
[19] | C.T. Liu, X.F. Sun, H.R. Guan, Z.Q. Hu, Surf. Coat. Technol. 194 (2005) 111-118. |
[20] | T. Narita, K.Z. Thosin, L. Fengqun, S. Hayashi, H. Murakami, B. Gleeson, D. Young, Mater. Corros. 56 (2005) 923-929. |
[21] | F. Lang, T. Narita, Intermetallics 15 (2007) 599-606. |
[24] | R. Ghasemi, Z. Valefi, J. Alloys Compd. 732 (2018) 470-485. |
[26] | J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26 (2002) 273-312. |
[27] | G.R. Krishna, D.K. Das, V. Singh, S.V. Joshi, Mater. Sci. Eng. A 251 (1998) 40-47. |
[28] | S.R. Levine, R.M. Caves, J. Electrochemem. Soc. 121 (1973) 1051. |
[29] | M. Li, N. Li, J. Zhang, C. Zhou, Surf. Coat. Technol. 337 (2018) 68-74. |
[30] |
R.A. Page, G.R. Leverant, J. Eng. Gas. Turb. Power 121 (1999) 313-319.
DOI URL |
[31] | A.W. Funkenbusch, T.A. Stephenson, G. McCarthy, H. Fraser, Metall. Mater. Trans. A 16 (1985) 11-16. |
[32] | T.F. An, H.R. Guan, X.F. Sun, Z.Q. Hu, Oxid. Met. 54 (2000) 301-316. |
[33] | S.C. Choi, H.J. Cho, Y.J. Kim, D.B. Lee, Oxid. Met. 46 (1996) 51-72. |
[34] | C.M.F. Rae, M.S. Hook, R.C. Reed, Mater. Sci. Eng. A 396 (2005) 231-239. |
[35] | R. Wang, X. Gong, H. Peng, Y. Ma, H. Guo, Appl. Surf. Sci. 326 (2015) 124-130. |
[36] | C.M.F. Rae, R.C. Reed,, Acta Mater. 49 (2001) 4113-4125. |
[37] | X. Jing Xu, Q. Wu, S. Kai Gong, S. Suo Li , Mater. Sci.Forum 747-748 (2013) 582-587. |
[38] | R.L. Mannheim, J.L. Garin, J. Mater. Process. Technol. 143-144 (2003) 533-538. |
[1] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[2] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[3] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[4] | Quanqiang Shi, Wei Yan, Yanfen Li, Naiqiang Zhang, Yiyin Shan, Ke Yang, Hiroaki Abe. Oxidation behavior of ferritic/martensitic steels in flowing supercritical water [J]. J. Mater. Sci. Technol., 2021, 64(0): 114-125. |
[5] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[6] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[7] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[8] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[9] | Min Yang, Jun Zhang, Weimin Gui, Songsong Hu, Zhuoran Li, Min Guo, Haijun Su, Lin Liu. Coupling phase field with creep damage to study γʹ evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 129-137. |
[10] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[11] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[12] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[13] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[14] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[15] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||