J. Mater. Sci. Technol. ›› 2021, Vol. 64: 114-125.DOI: 10.1016/j.jmst.2020.01.009
• Research Article • Previous Articles Next Articles
Quanqiang Shia, Wei Yana, Yanfen Lia, Naiqiang Zhangb,*(), Yiyin Shana, Ke Yangc, Hiroaki Abed,*(
)
Received:
2019-04-18
Accepted:
2019-07-03
Published:
2021-02-20
Online:
2021-03-15
Contact:
Naiqiang Zhang,Hiroaki Abe
About author:
kyang@imr.ac.cn (K. Yang).Quanqiang Shi, Wei Yan, Yanfen Li, Naiqiang Zhang, Yiyin Shan, Ke Yang, Hiroaki Abe. Oxidation behavior of ferritic/martensitic steels in flowing supercritical water[J]. J. Mater. Sci. Technol., 2021, 64: 114-125.
Steels | C | Si | Cr | Mn | W | Ta | V | Nb | Ni | Mo | P (ppm) | S (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P91 | 0.10 | 0.26 | 8.5 | 0.46 | – | – | 0.20 | 0.04 | 0.17 | 0.92 | 80 | 70 |
SIMP | 0.22 | 1.22 | 10.24 | 0.52 | 1.45 | 0.12 | 0.18 | 0.01 | – | – | 30 | 40 |
Table 1 Chemical compositions of experimental steels (wt.%).
Steels | C | Si | Cr | Mn | W | Ta | V | Nb | Ni | Mo | P (ppm) | S (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P91 | 0.10 | 0.26 | 8.5 | 0.46 | – | – | 0.20 | 0.04 | 0.17 | 0.92 | 80 | 70 |
SIMP | 0.22 | 1.22 | 10.24 | 0.52 | 1.45 | 0.12 | 0.18 | 0.01 | – | – | 30 | 40 |
Fig. 3. SEM images morphologies of the surface oxide scales formed on SIMP and P91steels exposed to flowing deaerated SCW at 700 °C under 25 MPa for different time (a, c, e, g, i) SIMP steel and (b, d, f, h, j) P91 for 200, 400, 600, 800 and 1000 h, respectively.
Location | Fe | O | Cr | Si | Mn |
---|---|---|---|---|---|
1 | 74.36 | 25.64 | -- | -- | -- |
2 | 72.20 | 26.40 | 1.41 | -- | -- |
3 | 75.02 | 21.76 | 2.02 | -- | 1.19 |
4 | 53.65 | 18.47 | 23.51 | 1.07 | 3.30 |
Table 2 Elemental composition at selected locations of SIMP steel exposed to flowing deaerated SCW at 700 °C under 25 MPa for 1000 h (wt.%).
Location | Fe | O | Cr | Si | Mn |
---|---|---|---|---|---|
1 | 74.36 | 25.64 | -- | -- | -- |
2 | 72.20 | 26.40 | 1.41 | -- | -- |
3 | 75.02 | 21.76 | 2.02 | -- | 1.19 |
4 | 53.65 | 18.47 | 23.51 | 1.07 | 3.30 |
Fig. 6. SEM images (a, b) and EDS analysis (c, d) of cross-section morphologies of oxide scales formed on SIMP and P91steels exposed to flowing deaerated SCW at 700 °C under 25 MPa for 1000 h.
Fig. 7. SEM-BSE images and EDS elemental analysis of cross-sectional morphologies of oxide scales formed on SIMP steel exposed to flowing deaerated SCW at 700 °C under 25 MPa for 200 h.
Fig. 8. SEM-BSE images of cross section of oxide scale formed on SIMP and P91steels exposed to flowing deaerated SCW at 700 °C under 25 MPa for different time (a, c, e, g, i) SIMP steel and (b, d, f, h, j) P91 for 200, 400, 600, 800 and 1000 h, respectively.
Fig. 9. Oxide scale thickness and ratio of outer to inner layer thickness of SIMP and P91 steels exposed to flowing deaerated SCW at 700 °C under 25 MPa for different time.
Steels | Time (h) | O | Si | Cr | Fe |
---|---|---|---|---|---|
P91 | 200 | 16.24 | 0.41 | 17.28 | 66.07 |
400 | 17.45 | 0.52 | 16.22 | 65.81 | |
600 | 16.36 | 0.39 | 16.84 | 66.41 | |
800 | 16.93 | 0.54 | 17.06 | 65.47 | |
1000 | 19.10 | 0.51 | 16.13 | 64.26 | |
SIMP | 200 | 18.09 | 3.50 | 20.14 | 58.27 |
400 | 16.93 | 3.74 | 20.55 | 58.78 | |
600 | 19.64 | 3.54 | 20.24 | 56.58 | |
800 | 16.86 | 3.35 | 20.52 | 59.28 | |
1000 | 18.82 | 3.65 | 20.65 | 56.88 |
Table 3 Elemental contents of inner Fe-Cr spinel of SIMP and P91 steels exposed to flowing deaerated SCW at 700 °C under 25 MPa for different exposure times (wt.%).
Steels | Time (h) | O | Si | Cr | Fe |
---|---|---|---|---|---|
P91 | 200 | 16.24 | 0.41 | 17.28 | 66.07 |
400 | 17.45 | 0.52 | 16.22 | 65.81 | |
600 | 16.36 | 0.39 | 16.84 | 66.41 | |
800 | 16.93 | 0.54 | 17.06 | 65.47 | |
1000 | 19.10 | 0.51 | 16.13 | 64.26 | |
SIMP | 200 | 18.09 | 3.50 | 20.14 | 58.27 |
400 | 16.93 | 3.74 | 20.55 | 58.78 | |
600 | 19.64 | 3.54 | 20.24 | 56.58 | |
800 | 16.86 | 3.35 | 20.52 | 59.28 | |
1000 | 18.82 | 3.65 | 20.65 | 56.88 |
Fig. 11. STEM images and elemental line scanning of interface between the Fe-Cr spinel layers and matrix of SIMP steel exposed to flowing deaerated SCW at 700 °C under 25 MPa for 1000 h.
Fig. 12. Schematic representation of mechanism of oxide scale formation on SIMP steel during exposure to flowing deaerated SCW at 700 °C under 25 MPa.
[1] |
USDOE, Philos. Rev., 66(2002), pp. 239-241.
DOI URL |
[2] | T.K. Kim, GEN-IV Reactors, Springer New York (2012), pp. 4050-4070. |
[3] | H. Hu, Z. Zhou, M. Li, L. Zhang, M. Wang, S. Li, C. Ge , Corros. Sci., 65(2012), pp. 209-213. |
[4] | L. Tan, T.R. Allen, Y. Yang , Corros. Sci., 53(2011), pp. 703-711. |
[5] | J. Bischoff, A.T. Motta, J. Nucl. Mater., 424(2012), pp. 261-276. |
[6] | S.F. Li, Z.J. Zhou, L.F. Zhang, L.W. Zhang, H.L. Hu, M. Wang, G.M. Zhang , Mater. Corros., 67(2015), pp. 264-270. |
[7] | N.Q. Zhang, H. Xu, B.R. Li, Y. Bai, D.Y. Liu , Corros. Sci., 56(2012), pp. 123-128. |
[8] | N.Q. Zhang, Z.L. Zhu, H. Xu, X.P. Mao, J. Li , Corros. Sci., 103(2016), pp. 124-131. |
[9] | O. Yeliseyeva, V. Tsisar, G. Benamati , Corros. Sci., 50(2008), pp. 1672-1683. |
[10] | L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant, G. Picard , Corros. Sci., 50(2008), pp. 2523-2536. |
[11] | L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard, G. Santarini , Corros. Sci., 50(2008), pp. 2537-2548. |
[12] | L. Martinelli , F. Balbaud‐Célérier, Mater.Corros., 62(2011), pp. 531-542. |
[13] | C. Schroer, J. Konys , J. Eng. Gas. Turbines Power, 132 (2010), Article 082901. |
[14] | R.L. Klueh, D.R. Harries, High-chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM West Conshohocken, PA(2001). |
[15] | R. Klueh, A. Nelson, J. Nucl. Mater., 371(2007), pp. 37-52. |
[16] | P. Ampornrat, G.S. Was, J. Nucl. Mater ., 371(2007), pp. 1-17. |
[17] | Z. Yu, M. Chen, C. Shen, S. Zhu, F. Wang , Corros. Sci., 121(2017), pp. 105-115. |
[18] | S.R.J. Saunders, M. Monteiro, F. Rizzo, Prog. Mater. Sci., 53(2008), pp. 775-837. |
[19] | I. Betova, M. Bojinov, P. Kinnunen, V. Lehtovuori, S. Peltonen , S. Penttil$\ddot{a}$, T. Saario, Revue Dhistoire De Léglise De France, 37(2006), pp. 153-187. |
[20] | X. Zhong, X. Wu, E.H. Han , Corros. Sci., 90(2015), pp. 511-521. |
[21] | L. Tan, X. Ren, T.R. Allen , Corros. Sci., 52(2010), pp. 1520-1528. |
[22] | G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, J. Nucl. Mater., 371(2007), pp. 176-201. |
[23] | Q.Q. Shi, J. Liu, W. Wang, W. Yan, Y.Y. Shan, K. Yang , Oxid. Met., 83(2015), pp. 521-532. |
[24] | Q.Q. Shi, J. Liu, H. Luan, Z.G. Yang, W. Wang, W. Yan, Y.Y. Shan, K. Yang, J. Nucl. Mater., 457(2015), pp. 135-141. |
[25] | Y. Ke, Y. Wei, Z. Wang, Y. Shan, Q. Shi, X. Shi, W. Wei , Acta Metall. Sin., 52(2016), pp. 1207-1221. |
[26] | J. Liu, W. Yan, W. Sha, W. Wang, Y. Shan, K. Yang, J. Nucl. Mater., 473(2016), pp. 189-196. |
[27] | J. Liu, Q. Shi, H. Luan, W. Yan, W. Sha, W. Wang, Y. Shan, K. Yang , Mater. Sci. Eng. A, 670(2016), pp. 97-105. |
[28] | Q.Q. Shi, L.L. Zhang, W. Yan, W. Wang, P.H. Yin, Y.Y. Shan, K. Yang , Oxid. Met., 89(2018), pp. 49-60. |
[29] | Z.L. Zhu, H. Xu, D.F. Jiang, N.Q. Zhang , Oxid. Met., 86(2016), pp. 483-496. |
[30] | J.G. Orelien, Dissert. These. Grad. (2007). |
[31] | Y. Li, S. Wang, X. Tang, D. Xu, Y. Guo, J. Zhang, L. Qian , Oxid. Met., 84(2015), pp. 1-18. |
[32] | L. Tan, T.R. Allen, Y. Yang , Corros. Sci., 53(2011), pp. 703-711. |
[33] | J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.U. Kern, L. Singheiser, W.J. Quadakkers , Corros. Sci., 46(2004), pp. 2301-2317. |
[34] | S.L. Perez, D.W. Saxey, T. Yamada, T. Terachi , Scr. Mater., 62(2010), pp. 855-858. |
[35] | J. Bischoff, A.T. Motta, R.J. Comstock, J. Nucl. Mater., 392(2009), pp. 272-279. |
[36] | M.H. Hurdus, L. Tomlinson, J.M. Titchmarsh , Oxid. Met., 34(1990), pp. 429-464. |
[37] | M. Montgomery, S.A. Jensen, F. Rasmussen, T. Vilhelmsen , Br. Corros. J., 44(2013), pp. 196-210. |
[38] | X. Zhong, X. Wu, E.H. Han, J. Supercrit. Fluids, 72(2012), pp. 68-77. |
[39] | J. Bischoff, A.T. Motta, J. Nucl. Mater., 424(2012), pp. 261-276. |
[40] | Y. Chen, K. Sridharan, T. Allen , Corros. Sci., 48(2006), pp. 2843-2854. |
[41] | L. Martinelli, F. Balbaud-Celerier, G. Picard, G. Santarini , Corros. Sci., 50(2008), pp. 2549-2559. |
[42] | L. Martinelli, F. Balbaud-Celerier, A. Terlain, S. Bosonnet, G. Picard, G. Santarini , Corros. Sci., 50(2008), pp. 2537-2548. |
[43] | L. Martinelli, F. Balbaud-Celerier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant, G. Picard , Corros. Sci., 50(2008), pp. 2523-2536. |
[44] | L. Tan, M.T. Machut, K. Sridharan, T.R. Allen, J. Nucl. Mater., 371(2007), pp. 161-170. |
[45] | X.Y. Zhong, X.Q. Wu, E.H. Han , Corros. Sci., 90(2015), pp. 511-521. |
[46] | Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, Y.F. Sun, S.B. Liu, E. Aghaie, Y.M. Zeng, M. Chmielus, W.Y. Zheng, D. Guzonas, W.X. Chen, J.L. Luo , Corros. Sci., 106(2016), pp. 188-207. |
[47] | S. Aggarwal, J. T$\ddot{o}$pfer, T.L. Tsai, R. Dieckmann, Solid State Ion., 101(1997), pp. 321-331. |
[48] | Y.H. Li, S.Z. Wang, P.P. Sun, D.H. Xu, M.M. Ren, Y. Guo, G.K. Lin , Corros. Sci., 128(2017), pp. 241-252. |
[49] | X.Y. Zhong, X.Q. Wu, E.H. Han, J. Mater. Sci. Technol., 34(2018), pp. 561-569. |
[50] | R.E. Lobnig, H.P. Schmidt, K. Hennesen, H.J. Grabke , Oxid. Met., 37(1992), pp. 81-93. |
[51] | X.Y. Zhong, E.H. Han, X.Q. Wu , Corros. Sci., 66(2013), pp. 369-379. |
[52] | I. Kaur, W. Gust , Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, Stuttgart(1988). |
[53] | V.B. Trindade, U. Krupp, B.Z. Hanjari, S. Yang, H.J. Christ , Mater. Res., 8(2005), pp. 371-375. |
[54] | Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, W. Zheng, D. Guzonas, M. Chmielus, W. Chen, J.L. Luo , Mater. Charact., 120(2016), pp. 273-284. |
[55] | J. Bischoff, A.T. Motta, C. Eichfeld, R.J. Comstock, G. Cao, T.R. Allen, J. Nucl. Mater., 441(2013), pp. 604-611. |
[56] | N. Pilling, R.E. Bedworth, J. Inst. Met., 29(1923), pp. 529-591. |
[57] | T. Mitchell, D. Voss, E. Butler, J. Mater. Sci., 17(1982), pp. 1825-1833. |
[58] | L. Tomlinson, N.J. Cory , Corros. Sci., 29(1989), pp. 939-965. |
[59] | G.B. Gibbs, R. Hales, Corros. Sci., 17 (1977), 487, 499-497,507 |
[60] | J. Robertson, M.I. Manning , Met. Sci. J., 4(1988), pp. 1064-1071. |
[61] | G. Bamba, Y. Wouters, A. Galerie, F. Charlot, A. Dellali , Acta Mater., 54(2006), pp. 3917-3922. |
[62] | J.S. Dunning, D.E. Alman, J.C. Rawers , Oxid. Met., 57(2002), pp. 409-425. |
[63] | T.J. Ahrens, Mineral Physics & Crystallography: A Handbook of Physical Constants, American Geophysical Union (2013). |
[64] | J. Robertson, M.I. Manning , Mater. Sci. Technol., 6(2013), pp. 81-92. |
[65] | J. Bischoff, A.T. Motta, J. Nucl. Mater., 430(2012), pp. 171-180. |
[66] | L. Tan, Y. Yang, T.R. Allen , Corros. Sci., 48(2006), pp. 3123-3138. |
[67] | J. Issartel, S. Martoia, F. Charlot, V. Parry, G. Parry, R. Estevez, Y. Wouters , Corros. Sci., 59(2012), pp. 148-156. |
[68] | L. Mikkelsen, S. Linderoth, J. Bilde-S?rensen, The effect of silicon addition on the high temperature oxidation of a Fe-Cr alloy, Materials Science Forum, Trans. Tech. Publ. (2004), pp. 117-122. |
[69] | R. Pettersson, L. Liu, J. Sund , Corros. Eng. Sci. Technol., 40(2005), pp. 211-216. |
[70] | B. Li, B. Gleeson , Oxid. Met., 65(2006), pp. 101-122. |
[71] |
S. Liu, D. Tang, H. Wu, L. Wang, J. Mater. Process. Technol., 213(2013), pp. 1068-1075.
DOI URL |
[72] |
A. Atkinson , Corros. Sci., 22(1982), pp. 87-102.
DOI URL |
[73] |
W. Jian, S. Lu, L. Rong, D. Li, Y. Li , Corros. Sci., 111(2016), pp. 13-25.
DOI URL |
[74] | P. Tunthawiroon, Y. Li, T. Ning, Y. Koizumi, A. Chiba , Corros. Sci., 95(2015), pp. 88-99. |
[75] | A. Paúl, S. Elmrabet, L. Alves, M. Da Silva, J. Soares, J. Odriozola , Nucl. Instr. Meth. Phys. Res. Sect. B, 181(2001), pp. 394-398. |
[76] | F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, S. Perrier , Mater. Character, 49(2002), pp. 55-65. |
[77] | A.M. Huntz, V. Bague, G. Beauple, C. Haut, C. Severac, P. Lecour, X. Longaygue, F. Ropital , Appl. Surf. Sci., 207(2003), pp. 255-275 |
[1] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[2] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[3] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[4] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[5] | Wenlong Qi, Jidong Wang, Xuanpeng Li, Yanan Cui, Yang Zhao, Junfeng Xie, Guanxin Zeng, Qiuying Gao, Tao Zhang, Fuhui Wang. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process [J]. J. Mater. Sci. Technol., 2021, 64(0): 153-164. |
[6] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[7] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[8] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[9] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[10] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[11] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[12] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[13] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[14] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[15] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||