J. Mater. Sci. Technol. ›› 2021, Vol. 64: 153-164.DOI: 10.1016/j.jmst.2019.10.009
• Research Article • Previous Articles Next Articles
Wenlong Qia, Jidong Wanga, Xuanpeng Lib, Yanan Cuib, Yang Zhaoa,*(), Junfeng Xiec, Guanxin Zengc, Qiuying Gaod, Tao Zhanga, Fuhui Wanga
Received:
2019-06-30
Accepted:
2019-10-21
Published:
2021-02-20
Online:
2021-03-15
Contact:
Yang Zhao
About author:
*. E-mail address: zhaoyang7402@mail.neu.edu.cn (Y. Zhao).Wenlong Qi, Jidong Wang, Xuanpeng Li, Yanan Cui, Yang Zhao, Junfeng Xie, Guanxin Zeng, Qiuying Gao, Tao Zhang, Fuhui Wang. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process[J]. J. Mater. Sci. Technol., 2021, 64: 153-164.
Fig. 1. Morphologies and structure of OS. (a) Surface morphology by SEM, (b) Cross-sectional morphology by SEM, (c) Cross-sectional morphology by TEM and (d) Electron diffraction by TEM.
Composition | HCl | HF | HAc | TG201 inhibitor | ||||
---|---|---|---|---|---|---|---|---|
A | B | |||||||
LA | (vol.%) | 12 | 1.5 | 3 | 3 | 1.5 | ||
Time (h) | 6 | |||||||
SA | Composition | Add CaCO3 to LA until the pH value is 3.8. | ||||||
Time (h) | 72 | |||||||
FW | Composition | HCO3- | Cl- | SO42- | Ca2+ | Mg2+ | K+ | Na+ |
(mg/L) | 189 | 128000 | 430 | 8310 | 561 | 6620 | 76500 | |
Time (h) | 720 | |||||||
Rotating rate (rpm) | 670 |
Table 1 Composition of testing solutions and productive processes.
Composition | HCl | HF | HAc | TG201 inhibitor | ||||
---|---|---|---|---|---|---|---|---|
A | B | |||||||
LA | (vol.%) | 12 | 1.5 | 3 | 3 | 1.5 | ||
Time (h) | 6 | |||||||
SA | Composition | Add CaCO3 to LA until the pH value is 3.8. | ||||||
Time (h) | 72 | |||||||
FW | Composition | HCO3- | Cl- | SO42- | Ca2+ | Mg2+ | K+ | Na+ |
(mg/L) | 189 | 128000 | 430 | 8310 | 561 | 6620 | 76500 | |
Time (h) | 720 | |||||||
Rotating rate (rpm) | 670 |
T (°C)/P (MPa) | Samples | Ecorr (mV) | icorr (μA/cm2) | |
---|---|---|---|---|
LA + SA | 95/2.8 | HP-13Cr SS (OS) | -242 ± 3 | 72 ± 2 |
HP-13Cr SS | -236 ± 6 | 50 ± 2 | ||
120/3.2 | HP-13Cr SS (OS) | -259 ± 7 | 180 ± 4 | |
HP-13Cr SS | -241 ± 5 | 52 ± 4 | ||
LA + SA + FW | 95/2.8 | HP-13Cr SS (OS) | -245 ± 4 | 48 ± 3 |
HP-13Cr SS | -230 ± 4 | 45 ± 6 | ||
120/3.2 | HP-13Cr SS (OS) | -259 ± 4 | 82 ± 2 | |
HP-13Cr SS | -213 ± 3 | 45 ± 3 |
Table 2 Electrochemical parameters for HP-13Cr SS in FW.
T (°C)/P (MPa) | Samples | Ecorr (mV) | icorr (μA/cm2) | |
---|---|---|---|---|
LA + SA | 95/2.8 | HP-13Cr SS (OS) | -242 ± 3 | 72 ± 2 |
HP-13Cr SS | -236 ± 6 | 50 ± 2 | ||
120/3.2 | HP-13Cr SS (OS) | -259 ± 7 | 180 ± 4 | |
HP-13Cr SS | -241 ± 5 | 52 ± 4 | ||
LA + SA + FW | 95/2.8 | HP-13Cr SS (OS) | -245 ± 4 | 48 ± 3 |
HP-13Cr SS | -230 ± 4 | 45 ± 6 | ||
120/3.2 | HP-13Cr SS (OS) | -259 ± 4 | 82 ± 2 | |
HP-13Cr SS | -213 ± 3 | 45 ± 3 |
Fig. 5. Surface morphologies after LA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 6. Surface morphologies after SA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 7. Surface morphologies after LA + SA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 8. Surface morphologies after LA + SA + FW process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 9. Cross-sectional morphologies after LA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 10. Cross-sectional morphologies after SA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 11. Cross-sectional morphologies after LA + SA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 12. Cross-sectional morphologies after LA + SA + FW process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 14. Element analysis of corrosion scales after LA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C/3.2 MPa.
Fig. 15. Element analysis of corrosion scales after LA + SA process: (a) HP-13Cr SS (OS) at 95 °C/2.8 MPa, (b) HP-13Cr SS at 95 °C/2.8 MPa, (c) HP-13Cr SS (OS) at 120 °C/3.2 MPa, (d) HP-13Cr SS at 120 °C / 3.2 MPa.
Condition | Roughness after immersion tests (μm) | Roughness after removing corrosion scales (μm) | ||||||
---|---|---|---|---|---|---|---|---|
95 °C/2.8 MPa | 120 °C/3.2 MPa | 95 °C/2.8 MPa | 120 °C/3.2 MPa | |||||
HP-13Cr (OS) | HP-13Cr | HP-13Cr (OS) | HP-13Cr | HP-13Cr (OS) | HP-13Cr | HP-13Cr (OS) | HP-13Cr | |
LA | 3.2 ± 0.3 | 2.8 ± 0.2 | 6.6 ± 0.3 | 4.4 ± 0.5 | 1.4 ± 0.2 | 0.8 ± 0.1 | 2.9 ± 0.4 | 1.5 ± 0.2 |
SA | 2.3 ± 0.3 | 1.8 ± 0.1 | 2.7 ± 0.4 | 1.5 ± 0.3 | 1.1 ± 0.1 | 0.30 ± 0.05 | 3.2 ± 0.3 | 0.10 ± 0.03 |
LA + SA | 4.1 ± 0.5 | 3.0 ± 0.3 | 8.8 ± 0.4 | 4.5 ± 0.3 | 7.6 ± 0.6 | 3.9 ± 0.3 | 7.7 ± 0.1 | 4.2 ± 0.5 |
LA + SA + FW | 4.9 ± 0.6 | 2.6 ± 0.4 | 5.2 ± 0.5 | 3.0 ± 0.3 | 4.7 ± 0.3 | 4.4 ± 0.2 | 4.8 ± 0.3 | 4.3 ± 0.5 |
Table 3 Roughness of HP-13Cr SS surfaces.
Condition | Roughness after immersion tests (μm) | Roughness after removing corrosion scales (μm) | ||||||
---|---|---|---|---|---|---|---|---|
95 °C/2.8 MPa | 120 °C/3.2 MPa | 95 °C/2.8 MPa | 120 °C/3.2 MPa | |||||
HP-13Cr (OS) | HP-13Cr | HP-13Cr (OS) | HP-13Cr | HP-13Cr (OS) | HP-13Cr | HP-13Cr (OS) | HP-13Cr | |
LA | 3.2 ± 0.3 | 2.8 ± 0.2 | 6.6 ± 0.3 | 4.4 ± 0.5 | 1.4 ± 0.2 | 0.8 ± 0.1 | 2.9 ± 0.4 | 1.5 ± 0.2 |
SA | 2.3 ± 0.3 | 1.8 ± 0.1 | 2.7 ± 0.4 | 1.5 ± 0.3 | 1.1 ± 0.1 | 0.30 ± 0.05 | 3.2 ± 0.3 | 0.10 ± 0.03 |
LA + SA | 4.1 ± 0.5 | 3.0 ± 0.3 | 8.8 ± 0.4 | 4.5 ± 0.3 | 7.6 ± 0.6 | 3.9 ± 0.3 | 7.7 ± 0.1 | 4.2 ± 0.5 |
LA + SA + FW | 4.9 ± 0.6 | 2.6 ± 0.4 | 5.2 ± 0.5 | 3.0 ± 0.3 | 4.7 ± 0.3 | 4.4 ± 0.2 | 4.8 ± 0.3 | 4.3 ± 0.5 |
Fig. 16. Simulation of flow near surface of HP-13Cr SS (OS) during dynamic FW process. (a) Velocity contour of flow near surface, (b) Velocity vector of flow near surface and (c) Streamline of turbulence eddy at local peak-valley position.
[1] | X.D. Lan, X.X. Lü, Y.M. Zhu, H.F. Yu, J. Nat . Gas Sci. Eng., 22(2015), pp. 633-645. |
[2] | Z.D. Cui, S.L. Wu, C.F. Li, S.L. Zhu, X.J. Yang , Mater. Lett., 58(2004), pp. 1035-1040. |
[3] | A. Singh, K.R. Ansari, A. Kumar, W.Y. Liu, S.S. Chen, Y.H. Lin, J. Alloys. Compd., 712(2017), pp. 121-133. |
[4] | C. Crowe, J. Masmonteil, E. Touboul, R. Thomas , Oilfield Rev., 4(1992), pp. 24-39. |
[5] | Y. Zhao, J.F. Xie, G.X. Zeng, T. Zhang, D.K. Xu, F.H. Wang , Electrochim. Acta, 293(2019), pp. 116-127. |
[6] | M. Finsgar, J. Jackson , Corrosion Sci., 86(2014), pp. 17-41. |
[7] | M.X. Bai, A.Q. Shen, L.D. Meng, J.J. Zhu, K.P. Song, J. Pet. Sci. Eng., 171(2018), pp. 584-591. |
[8] | X.P. Li, Y. Zhao, W.L. Qi, J.F. Xie, J.D. Wang, B. Liu, G.X. Zeng, T. Zhang, F.H. Wang , Appl. Surf. Sci., 469(2019), pp. 146-161. |
[9] | R.M. Moreira, C.V. Franco, C.J.B.M. Joia, S. Giordana, O.R. Mattos , Corros. Sci., 46(2004), pp. 2987-3003. |
[10] | S.D. Zhu, A.Q. Fu, J. Miao, Z.F. Yin, G.S. Zhou, J.F. Wei , Corros. Sci., 53(2011), pp. 3156-3165. |
[11] | S. Huizinga, W. Like , Corrosion-Houston Texas, 50(2012), pp. 555-566. |
[12] | J. Abel, S. Virtanen , Corros. Sci., 98(2015), pp. 318-326. |
[13] | G.A. Zhang, Y.F. Cheng , Corros. Sci., 51(2009), pp. 1589-1595. |
[14] | T. Sunaba, T. Ito, Y. Miyata, S. Asakura, T. Shinohara, T. Yakou, Y. Tomoe, H. Honda , Corrosion, 70(2014), pp. 988-999. |
[15] | W. Li, B.F.M. Pots, B. Brown, K.E. Kee, S. Nesic, Corros. Sci., 110(2016), pp. 35-45. |
[16] | A. Kahyarian, M. Singer, S. Nesic, J. Nat . Gas Sci. Eng., 29(2016), pp. 530-549. |
[17] | L. Wei, X.L. Pang, K.W. Gao , Corros. Sci., 136(2018), pp. 339-351. |
[18] | L. Wei, X.L. Pang, C. Liu, K.W. Gao , Corros. Sci., 100(2015), pp. 404-420. |
[19] | Y. Zhao, X.P. Li, C. Zhang, T. Zhang, J.F. Xie, G.X. Zeng, D.K. Xu, F.H. Wang , Corros. Sci., 145(2018), pp. 307-319. |
[20] | B. Evgeny, T. Hughes, D. Eskin , Corros. Sci., 103(2016), pp. 196-205. |
[21] | D.D. Macdonald, A.C. Scott, P. Wentrcek, , J. Electrochem. Soc., 126(1979), pp. 908-911. |
[22] | J.Z. Wang, J.Q. Wang, H.L. Ming, Z.M. Zhang, E.H. Han, J. Mater. Sci. Technol., 34(2018), pp. 1419-1427. |
[23] | E. Barmatov, T. Hughes, J. Geddes, M. Nagl , Research on Corrosion Inhibitors for Acid Stimulation, NACE(2012), C2012-0001573. |
[24] | V.C. Patel, M.R. Head, J. Fluid Mech ., 38(1969), pp. 181-201. |
[25] | G.A. Schmitt, W. Bücken, R. Fanebust , Corrosion, 48(1992), pp. 431-440. |
[26] | D.C. Silverman , Corrosion, 60(2004), pp. 1003-1023. |
[27] | G. Schmitt, T. Gudde, E. Strobel-Effertz, Corrosion-Houston Texas, 119 (2) (1996), pp. 164-170. |
[28] | S. Nesic , Corros. Sci., 49(2007), pp. 4308-4338. |
[29] | V. Ruzic, M. Veidt, S. Nesic , Corrosion, 62(2006), pp. 419-432. |
[30] | Y. Zhao, S.Y. Cao, T. Zhang, J.F. Xie, D.K. Xu, F.H. Wang , Acta Metall. Sin.(Engl. Lett.), 32(2019), pp. 944-950. |
[31] | K. Wang, X.B. Ma, Y.S. Wang, R.Y. He, , J. Electrochem. Soc., 164(2017), pp. 453-463. |
[32] | J.N. Harb, R.C. Alkire, , J. Electrochem. Soc., 138 (1991), pp. 3568-3575. |
[1] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
[2] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[3] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[4] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[5] | Quanqiang Shi, Wei Yan, Yanfen Li, Naiqiang Zhang, Yiyin Shan, Ke Yang, Hiroaki Abe. Oxidation behavior of ferritic/martensitic steels in flowing supercritical water [J]. J. Mater. Sci. Technol., 2021, 64(0): 114-125. |
[6] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[7] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[8] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[9] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[10] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[11] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[12] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[13] | Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function [J]. J. Mater. Sci. Technol., 2021, 70(0): 59-66. |
[14] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[15] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||