J. Mater. Sci. Technol. ›› 2021, Vol. 64: 29-37.DOI: 10.1016/j.jmst.2020.04.017
• Research Article • Previous Articles Next Articles
Xuan Wu, Yuanyuan Liu*(), Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang*(
)
Received:
2019-11-14
Accepted:
2020-04-03
Published:
2021-02-20
Online:
2021-03-15
Contact:
Yuanyuan Liu,Yiming Jiang
About author:
ymjiang@fudan.edu.cn(Y. Jiang).Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels[J]. J. Mater. Sci. Technol., 2021, 64: 29-37.
Materials | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | Fe | CCI | PREN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDSS 2002 | 0.03 | 0.4 | 3.2 | 0.016 | 0.004 | 21.1 | 1.8 | 0.4 | - | 0.16 | bal. | 27.06 | 22.42 |
AISI 304 | 0.05 | 0.4 | 0.9 | 0.031 | 0.001 | 18.1 | 8.0 | - | - | 0.05 | bal. | 19.45 | 18.20 |
AISI 316L | 0.02 | 0.5 | 1.4 | 0.034 | 0.001 | 16.4 | 10.2 | 2.0 | 0.16 | 0.03 | bal. | 25.68 | 22.40 |
DSS 2205 | 0.03 | 0.5 | 1.4 | 0.023 | 0.001 | 22.3 | 5.4 | 3.1 | 0.15 | 0.15 | bal. | 39.06 | 34.13 |
Table 1 Chemical compositions and the calculated CCI and PREN values for LDSS 2002, AISI 304, AISI 316L, and DSS 2205 stainless steels (wt%).
Materials | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | Fe | CCI | PREN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDSS 2002 | 0.03 | 0.4 | 3.2 | 0.016 | 0.004 | 21.1 | 1.8 | 0.4 | - | 0.16 | bal. | 27.06 | 22.42 |
AISI 304 | 0.05 | 0.4 | 0.9 | 0.031 | 0.001 | 18.1 | 8.0 | - | - | 0.05 | bal. | 19.45 | 18.20 |
AISI 316L | 0.02 | 0.5 | 1.4 | 0.034 | 0.001 | 16.4 | 10.2 | 2.0 | 0.16 | 0.03 | bal. | 25.68 | 22.40 |
DSS 2205 | 0.03 | 0.5 | 1.4 | 0.023 | 0.001 | 22.3 | 5.4 | 3.1 | 0.15 | 0.15 | bal. | 39.06 | 34.13 |
Fig. 1. Schematic illustration of the working electrode with artificial crevices: (a) dimensions of the plate specimen, (b) a photograph of the specimen with artificial crevices, and (c) the assembly of the working electrode.
Fig. 2. Procedures of the potentiodynamic-galvanostatic-potentiodynamic technique (a) and the defined parameters from the schematic log(j)-E curves (b). ER,CREV, Ea and Eb represent the crevice repassivation potential, the activation potential and the breakdown potential, respectively.
Fig. 3. Potentiodynamic polarization curves of AISI 304, AISI 316L, LDSS 2002, and DSS 2205 specimens in 0.1 M NaCl solution with 0.02 M borate ions at 25 °C.
Fig. 4. log(j)-E curves of the PD-GS-PD measurement for AISI 304, AISI 316L, LDSS 2002, and DSS 2205 specimens in 0.1 M NaCl solution with 0.02 M borate ions at 50 °C.
Fig. 5. Potential versus time curves of the galvanostatic step in the PD-GS-PD measurement for AISI 304, AISI 316L, LDSS 2002, and DSS 2205 specimens in 0.1 M NaCl solution with 0.02 M borate ions at 50 °C.
Fig. 6. Derived breakdown potential, activation potential, and crevice repassivation potential from the PD-GS-PD measurement for AISI 304, AISI 316L, LDSS 2002, and DSS 2205 specimens.
Fig. 9. Current density responses of specimens tested in the buffer solution with a gradually increased chloride concentration at 50 °C in the CCCCREV measurement.
Fig. 10. SEM images of crevice corrosion morphologies for specimens after the CCCCREV measurement: (a) AISI 304, (b) AISI 316L, (c) the KOH etched LDSS 2002, and (d) the KOH etched DSS 2205.
Materials | Phase | Volume fraction | Cr | Mo | Mn | N | CCI | PREN |
---|---|---|---|---|---|---|---|---|
LDSS 2002 | γ | 56 % | 20.6 | 0.3 | 3.2 | 0.25 | 28.58 | 23.39 |
α | 44 % | 21.4 | 0.5 | 3.2 | 0.05 | 24.80 | 20.85 | |
DSS 2205 | γ | 52 % | 20.8 | 2.8 | 1.4 | 0.24 | 38.76 | 33.44 |
α | 48 % | 22.4 | 3.7 | 1.4 | 0.05 | 38.92 | 34.21 |
Table 2 Phase compositions and the calculated CCI and PREN values for LDSS 2002 and DSS 2205 stainless steels.
Materials | Phase | Volume fraction | Cr | Mo | Mn | N | CCI | PREN |
---|---|---|---|---|---|---|---|---|
LDSS 2002 | γ | 56 % | 20.6 | 0.3 | 3.2 | 0.25 | 28.58 | 23.39 |
α | 44 % | 21.4 | 0.5 | 3.2 | 0.05 | 24.80 | 20.85 | |
DSS 2205 | γ | 52 % | 20.8 | 2.8 | 1.4 | 0.24 | 38.76 | 33.44 |
α | 48 % | 22.4 | 3.7 | 1.4 | 0.05 | 38.92 | 34.21 |
[1] | E.C. Hornus, M.A. Rodríguez, R.M. Carranza, R.B. Rebak , Corrosion, 732017, pp. 41-52. |
[2] | R.C. Newman , Corrosion, 572001, pp. 1030-1041. |
[3] | N.J. Laycock, J. Stewart, R.C. Newman , Corros. Sci., 39(1997), pp. 1791-1809. |
[4] | L. Stockert, H. Böhni , Mater. Sci. Forum,44- 45(1991), pp. 313-328. |
[5] | S.H. Kim, J.H. Lee, J.G. Kim, W.C. Kim , Met. Mater. Int., 242018, pp. 516-524. |
[6] | D. Chen, E.H. Han, X. Wu , Corros. Sci., 1112016, pp. 518-530. |
[7] | H.Y. Chang, K.T. Kim, N.I. Kim, Y.S. Kim , Corros. Sci. Technol., 152016, pp. 58-68. |
[8] | D. Han, Y.M. Jiang, C. Shi, B. Deng, J. Li, J. Mater. Sci., 472012, pp. 1018-1025. |
[9] | B. Cai, Y. Liu, X. Tian, F. Wang, H. Li, R. Ji , Corros. Sci., 522010, pp. 3235-3242. |
[10] | U. Steinsmo, T. Rogne, J.M. Drugli, P.O. Gartland , Corrosion, 53(1997), pp. 26-32. |
[11] | J.M. Wang, S.S. Qian, Y.Y. Liu, Y.T. Sun, Y.M. Jiang, J. Li , Acta Metall. Sin. Engl. Lett., 312018, pp. 815-822. |
[12] | K. Miyamoto, S. Sakakita, C.F. Werner, T. Yoshinobu, Phys. Status Solidi A, 215 ( 2018),Article 1700963. |
[13] | M. Nishimoto, J. Ogawa, I. Muto, Y. Sugawara, N. Hara , Corros. Sci., 1062016, pp. 298-302. |
[14] | S. Marcelin, N. Pébère, S. Régnier, J. Electroanal. Chem., 7372015, pp. 198-205. |
[15] | A.K. Mishra, G.S. Frankel , Corrosion, 642008, pp. 836-844. |
[16] | B.E. Wilde, E. Williams , Electrochim. Acta, 161971, pp. 1971-1985. |
[17] | ASTM G192-08R14, Test Method for Determining the Crevice Repassivation Potential of Corrosion-Resistant Alloys Using a Potentiodynamic-Galvanostatic-Potentiostatic Technique. |
[18] | M.A. Kappes, M.R. Ortíz, M. Iannuzzi, R.M. Carranza , Corrosion, 732017, pp. 31-40. |
[19] | M.R. Ortíz, M.A. Rodríguez, R.M. Carranza , R.B. Rebak, Corrosion, 66( 2010)105002-105002-12. |
[20] | D. Han, Y. Jiang, B. Deng, L. Zhang, J. Gao, H. Tan, J. Li , Corrosion, 67( 2011), 025004-1-025004-7. |
[21] | R.J. Brigham , Corrosion, 301974, pp. 396-398. |
[22] | L.B. Niu, K. Okano, S. Izumi, K. Shiokawa, M. Yamashita, Y. Sakai , Corros. Sci., 1322018, pp. 284-292. |
[23] | F. Bottoli, M.S. Jellesen, T.L. Christiansen, G. Winther, M.A.J. Somers, Appl. Surf. Sci., 4312018, pp. 24-31. |
[24] | H.W. Pickering, J. Electrochem. Soc., 1502003, p. K1. |
[25] | N.N. Khobragade, A.V. Bansod, A.P. Patil, Mater. Res. Express, 5 (2018), Article 046526. |
[26] | N. Sridhar, G.A. Cragnolino , Corrosion, 491993, pp. 885-894. |
[27] | X. Wu, Y. Sun, Y. Liu, Y. Yang, J. Li, Y. Jiang, J. Electrochem. Soc., 1652018, pp. C939-C949. |
[28] | J.Y. Maetz, S. Cazottes, C. Verdu, F. Danoix, X. Kléber , Microsc. Microanal., 222016, pp. 463-473. |
[29] | Y. Guo, T. Sun, J. Hu, Y. Jiang, L. Jiang, J. Li, J. Alloys Compd., 6582016, pp. 1031-1040. |
[30] | Y. Guo, J. Hu, J. Li, L. Jiang, T. Liu, Y. Wu , Materials, 72014, pp. 6604-6619. |
[31] | Y.Z. Yang, Y.M. Jiang, J. Li , Corros. Sci., 762013, pp. 163-169. |
[32] | Y. Li, W. Li, J.C. Hu, H.M. Song, X.J. Jin , Int. J. Plast., 882017, pp. 53-69. |
[33] | C. Herrera, D. Ponge, D. Raabe , Acta Mater., 592011, pp. 4653-4664. |
[34] | D. Han, Y. Jiang, C. Shi, Z. Li, J. Li , Corros. Sci., 532011, pp. 3796-3804. |
[35] | N. Ebrahimi, P. Jakupi, J.J. Noël, D.W. Shoesmith , Corrosion, 712015, pp. 1441-1451. |
[36] | P.E. Arnvig, A.D. Bisgard , Corrosion-The NACE International Annual Conference and Exposition, (1996). |
[37] | T. Aoyama, Y. Sugawara, I. Muto, N. Hara , Corros. Sci., 1272017, pp. 131-140. |
[38] | E.C. Hornus, C.M. Giordano, M.A. Rodriguez, R.M. Carranza, R.B. Rebak, J. Electrochem. Soc., 1622014, pp. C105-C113. |
[39] | E.A. Abd El Meguid, A.A. Abd El Latif, Corros. Sci., 462004, pp. 2431-2444. |
[40] | J.R. Galvele, J. Electrochem. Soc ., 1231976, pp. 464-476. |
[41] | R.C. Newman, A.A. Ajjawi, H. Ezuber, S. Turgoose , Corros. Sci., 281988, pp. 471-477. |
[42] | X. Shan, J.H. Payer, J. Electrochem. Soc ., 1562009, pp. C313-C321. |
[43] | N. Sridhar, G. Tormoen, S. Hackney, A. Anderko , Corrosion, 652009, pp. 650-662. |
[44] | E. Symniotis , Corrosion, 461990, pp. 2-12. |
[45] | W.T. Tsai, J.R. Chen , Corros. Sci., 492007, pp. 3659-3668. |
[46] | H. Tan, Y. Jiang, B. Deng, T. Sun, J. Xu, J. Li , Mater. Charact., 602009, pp. 1049-1054. |
[47] | J.O. Nilsson, P. Kangas, T. Karlsson, A. Wilson , Metall. Mater. Trans. A, 312000, pp. 35-45. |
[48] | L. Weber, P.J. Uggowitzer , Mater. Sci. Eng. A, 2421998, pp. 222-229. |
[49] | J. Soltis , Corros. Sci., 902015, pp. 5-22. |
[50] | G.S. Frankel, J. Electrochem. Soc ., 1451998, pp. 2186-2198. |
[51] | J.H. Wang, C.C. Su, Z. Szklarska-Smialowska , Corros. Sci., 441988, pp. 732-737. |
[1] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
[2] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[3] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[4] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[5] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[6] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[7] | Wenlong Qi, Jidong Wang, Xuanpeng Li, Yanan Cui, Yang Zhao, Junfeng Xie, Guanxin Zeng, Qiuying Gao, Tao Zhang, Fuhui Wang. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process [J]. J. Mater. Sci. Technol., 2021, 64(0): 153-164. |
[8] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[9] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[10] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[11] | Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater [J]. J. Mater. Sci. Technol., 2021, 66(0): 177-185. |
[12] | Jiuyi Li, Xiankang Zhong, Tianguan Wang, Tan Shang, Junying Hu, Zhi Zhang, Dezhi Zeng, Duo Hou, Taihe Shi. Synergistic effect of erosion and hydrogen on properties of passive film on 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 67(0): 1-10. |
[13] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[14] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[15] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||