J. Mater. Sci. Technol. ›› 2021, Vol. 66: 177-185.DOI: 10.1016/j.jmst.2020.06.030
• Research Article • Previous Articles Next Articles
Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li*()
Received:
2020-04-07
Revised:
2020-06-02
Accepted:
2020-06-04
Published:
2021-03-10
Online:
2021-04-01
Contact:
Moucheng Li
About author:
* E-mail address: mouchengli@shu.edu.cn (M. Li).Hongtao Zeng, Yong Yang, Minhang Zeng, Moucheng Li. Effect of dissolved oxygen on electrochemical corrosion behavior of 2205 duplex stainless steel in hot concentrated seawater[J]. J. Mater. Sci. Technol., 2021, 66: 177-185.
C | P | S | Si | Mn | Cr | Ni | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|
0.014 | 0.035 | 0.004 | 0.61 | 1.41 | 23.08 | 6.08 | 3.04 | 0.17 | 64.32 |
Table 1 Chemical composition of 2205 DSS (wt.%).
C | P | S | Si | Mn | Cr | Ni | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|
0.014 | 0.035 | 0.004 | 0.61 | 1.41 | 23.08 | 6.08 | 3.04 | 0.17 | 64.32 |
NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl | NaHCO3 | KBr |
---|---|---|---|---|---|---|
49.06 | 10.4 | 8.18 | 2.32 | 1.39 | 0.402 | 0.202 |
Table 2 Composition of the concentrated artificial seawater used in the tests (g L-1).
NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl | NaHCO3 | KBr |
---|---|---|---|---|---|---|
49.06 | 10.4 | 8.18 | 2.32 | 1.39 | 0.402 | 0.202 |
Fig. 3. Impedance plots (a) Nyquist and (b) Bode for the specimens in the concentrated seawater with different CDO at 72 °C. Symbols: experimental data; lines: fitted values.
DO (mg L-1) | Ep (mVSCE) | ip (μA cm-2) | Erp (mVSCE) | dmax (μm) |
---|---|---|---|---|
0.34 | 298 ± 16.3 | 2.6 ± 0.5 | 32 ± 26.7 | 135.7 ± 8.0 |
0.53 | 330 ± 13.5 | 2.4 ± 0.4 | -21 ± 19.7 | 184.3 ± 32.9 |
0.67 | 359 ± 4.4 | 2.3 ± 0.5 | -26 ± 19.7 | 194.7 ± 11.6 |
0.81 | 390 ± 8.9 | 2.0 ± 0.3 | -42 ± 14.6 | 232.3 ± 60.1 |
3.06 | 498 ± 6.6 | 1.6 ± 0.3 | -54 ± 10.5 | 613.8 ± 123.7 |
Table 3 Electrochemical parameters for 2205 DSS in the concentrated seawater with different CDO at.72 °C.
DO (mg L-1) | Ep (mVSCE) | ip (μA cm-2) | Erp (mVSCE) | dmax (μm) |
---|---|---|---|---|
0.34 | 298 ± 16.3 | 2.6 ± 0.5 | 32 ± 26.7 | 135.7 ± 8.0 |
0.53 | 330 ± 13.5 | 2.4 ± 0.4 | -21 ± 19.7 | 184.3 ± 32.9 |
0.67 | 359 ± 4.4 | 2.3 ± 0.5 | -26 ± 19.7 | 194.7 ± 11.6 |
0.81 | 390 ± 8.9 | 2.0 ± 0.3 | -42 ± 14.6 | 232.3 ± 60.1 |
3.06 | 498 ± 6.6 | 1.6 ± 0.3 | -54 ± 10.5 | 613.8 ± 123.7 |
Fig. 6. SEM morphologies of the specimen surfaces after cyclic anodic polarization in the concentrated seawater with different CDO at 72 °C: (a) 0.34 mg L-1; (b) 0.67 mg L-1; (c) 0.81 mg L-1; (d) 3.06 mg L-1.
CDO (mg L-1) | 0.34 | 0.53 | 0.67 | 0.81 | 3.06 |
---|---|---|---|---|---|
Nd (1020 cm-3) | 2.62 ± 0.05 | 2.44 ± 0.07 | 2.35 ± 0.05 | 2.18 ± 0.12 | 1.83 ± 0.11 |
Na (1020 cm-3) | 3.46 ± 0.04 | 3.27 ± 0.06 | 3.02 ± 0.05 | 2.74 ± 0.1 | 2.68 ± 0.09 |
Table 4 The acceptor and donor densities of passive films formed in the hot concentrated seawater.
CDO (mg L-1) | 0.34 | 0.53 | 0.67 | 0.81 | 3.06 |
---|---|---|---|---|---|
Nd (1020 cm-3) | 2.62 ± 0.05 | 2.44 ± 0.07 | 2.35 ± 0.05 | 2.18 ± 0.12 | 1.83 ± 0.11 |
Na (1020 cm-3) | 3.46 ± 0.04 | 3.27 ± 0.06 | 3.02 ± 0.05 | 2.74 ± 0.1 | 2.68 ± 0.09 |
Fig. 8. The detailed XPS spectra of (a) Fe 2p3/2, (b) Cr 2p3/2, (c) O 1s and (d) Cl 2p3/2 for the passive films formed on the specimen surfaces at 0 VSCE in the concentrated seawater with different CDO. at 72 °C.
CDO (mg L-1) | Rs(Ω cm2) | Cf(μF cm-2) | αf | Cdl(μF cm-2) | αdl | Rp(kΩ cm2) | χ2(10-4) |
---|---|---|---|---|---|---|---|
0.34 | 2.5 ± 0.1 | 96.1 ± 4.3 | 0.83 ± 0.05 | 56.7 ± 6.8 | 0.81 ± 0.01 | 329.0 ± 67.8 | 8.2 ± 5.1 |
0.53 | 2.1 ± 0.4 | 76.0 ± 1.3 | 0.83 ± 0.04 | 46.8 ± 4.2 | 0.84 ± 0.07 | 379.2 ± 23.4 | 9.7 ± 2.4 |
0.67 | 2.5 ± 0.1 | 64.3 ± 2.1 | 0.83 ± 0.05 | 44.4 ± 2.1 | 0.83 ± 0.01 | 393.4 ± 12.5 | 9.1 ± 1.1 |
0.81 | 2.5 ± 0.1 | 51.9 ± 6.0 | 0.90 ± 0.01 | 39.0 ± 2.2 | 0.84 ± 0.06 | 405.4 ± 16.4 | 8.4 ± 2.3 |
3.06 | 2.4 ± 0.4 | 46.1 ± 9.1 | 0.84 ± 0.05 | 31.9 ± 4.0 | 0.83 ± 0.07 | 426.1 ± 59.9 | 8.3 ± 1.1 |
Table 5 Fitted results of EIS spectra under different CDO conditions.
CDO (mg L-1) | Rs(Ω cm2) | Cf(μF cm-2) | αf | Cdl(μF cm-2) | αdl | Rp(kΩ cm2) | χ2(10-4) |
---|---|---|---|---|---|---|---|
0.34 | 2.5 ± 0.1 | 96.1 ± 4.3 | 0.83 ± 0.05 | 56.7 ± 6.8 | 0.81 ± 0.01 | 329.0 ± 67.8 | 8.2 ± 5.1 |
0.53 | 2.1 ± 0.4 | 76.0 ± 1.3 | 0.83 ± 0.04 | 46.8 ± 4.2 | 0.84 ± 0.07 | 379.2 ± 23.4 | 9.7 ± 2.4 |
0.67 | 2.5 ± 0.1 | 64.3 ± 2.1 | 0.83 ± 0.05 | 44.4 ± 2.1 | 0.83 ± 0.01 | 393.4 ± 12.5 | 9.1 ± 1.1 |
0.81 | 2.5 ± 0.1 | 51.9 ± 6.0 | 0.90 ± 0.01 | 39.0 ± 2.2 | 0.84 ± 0.06 | 405.4 ± 16.4 | 8.4 ± 2.3 |
3.06 | 2.4 ± 0.4 | 46.1 ± 9.1 | 0.84 ± 0.05 | 31.9 ± 4.0 | 0.83 ± 0.07 | 426.1 ± 59.9 | 8.3 ± 1.1 |
Fig. 10. Thickness variation of the space charge layers in the anodic passive film formed at 0 VSCE in the hot concentrated seawater under different CDO conditions.
[1] |
A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Desalination 221 (2008) 47-69.
DOI URL |
[2] |
M. Elimelech, W.A. Phillip, Science 333 (2011) 712-717.
URL PMID |
[3] |
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452 (2008) 301-310.
URL PMID |
[4] |
T. Matsuura, Desalination 134 (2001) 47-54.
DOI URL |
[5] |
Q. Schiermeier, Nature 452 (2008) 260-261.
DOI URL PMID |
[6] | R. Francis, G. Byrne, G. Warburton, NACE-International Corrosion Conference Series 2011. Houston, Texas, U.S.A, 2011, pp. 11351, March 13-17. |
[7] |
J. Olsson, Desalination 183 (2005) 217-225.
DOI URL |
[8] | F. Xue, J.H. Dong, I.I.N. Etim, C.G. Wang, W. Ke, J.Mater. Sci. Technol. 34 (2018) 1349-1358. |
[9] |
Z.G. Duan, F. Arjmand, L.F. Zhang, F.J. Meng, H. Abe, J. Solid State Electrochem. 19 (2015) 2265-2273.
DOI URL |
[10] |
W.C. Baek, T. Kang, H.J. Sohn, Y.T. Kho, Electrochim. Acta 46 (2001) 2321-2325.
DOI URL |
[11] |
B.S. Covino, M. Rosen, T.J. Driscoll, T.C. Murphy, C.R. Molock, Corros. Sci. 26 (1986) 95-107.
DOI URL |
[12] | G.E. Badea, D. Ionita, P. Cret, Mater. Corros. 65 (2014) 1103-1110. |
[13] |
J.H. Zheng, W.F. Bogaerts, K. Phlippo, Fusion Eng. Des. 24 (1994) 299-307.
DOI URL |
[14] |
P. Srivastava, G. Kapse, A. Patwardhan, M. Mehta, Corrosion 37 (1981) 16-21.
DOI URL |
[15] |
C.A. Gervasi, C.M. Méndez, A.E. Bolzán, P.D. Bilmes, C.L. Llorente, J. Solid State Electrochem. 20 (2015) 1065-1074.
DOI URL |
[16] |
G. Latha, S. Rajeswari, Corros. Rev. 18 (2000) 429-456.
DOI URL |
[17] |
T. Hodgkiess, P. Chia, Desalination 84 (1991) 267-278.
DOI URL |
[18] |
F. Arjmand, L. Zhang, J. Wang, Nucl. Eng. Des. 322 (2017) 215-226.
DOI URL |
[19] | A. Malik, P.M. Kutty, N. Siddiqi, I.N. Andijani, T. Thankachan, J. King, Saud Univ. Sci. 8 (1996) 21-35. |
[20] |
H. Sun, X.Q. Wu, E.H. Han, Y.Z. Wei, Corros. Sci. 59 (2012) 334-342.
DOI URL |
[21] |
K.S. Raja, D.A. Jones, Corros. Sci. 48 (2006) 1623-1638.
DOI URL |
[22] |
N.N. Khobragade, A.V. Bansod, A.P. Patil, Mater. Res. Express 5 (2018), 046526.
DOI URL |
[23] |
Z.Y. Cui, S.S. Chen, Y.P. Dou, S. Han, L.W. Wang, C. Man, X. Wang, S.G. Chen, Y.F. Cheng, X.G. Li, Corros. Sci. 150 (2019) 218-234.
DOI URL |
[24] | X.Q. Yue, L. Zhang, D.P. Li, H. Honda, M.X. Lu, Z. Wang, X. Tang, Int. J. Electrochem. Sci. 12 (2017) 7853-7868. |
[25] |
L. Cáceres, T. Vargas, M. Parra, Electrochim. Acta 54 (2009) 7435-7443.
DOI URL |
[26] | Y.X. Qiao, Y.G. Zheng, P.C. Okafor, W. Ke, Electrochim. Acta 54 (2009) 2298-2304. |
[27] | Z.C. Feng, X.Q. Cheng, C.F. Dong, L. Xu, X.G. Li, J. Nucl. Mater. 407 (2010) 171-177. |
[28] | J. Olsson, M. Snis, Desalination 205 (2007) 104-113. |
[29] | Y. Yang, H.T. Zeng, S.S. Xin, X.L. Hou, M.C. Li, Corros. Sci. 165 (2020), 108383. |
[30] | H.T. Zeng, Y. Yang, R.H. Xu, S.S. Xin, M.C. Li, J. Solid State Electrochem. 23 (2019) 2793-2801. |
[31] | A. Ophir, F. Lokiec, Desalination 182 (2005) 187-198. |
[32] | M. A1-Shammiri, M. Safar, Desalination 126 (1999) 45-59. |
[33] |
A. Jarrah, M. Bigerelle, G. Guillemot, D. Najjar, A. Iost, J.M. Nianga, Corros. Sci. 53 (2011) 2453-2467.
DOI URL |
[34] | R.F. Weiss, Deep-Sea Res. Oceanogr. Abstr. 17 (1970) 721-735. |
[35] | H. Luo, X.Z. Wang, C.F. Dong, K. Xiao, X.G. Li, Corros. Sci. 124 (2017) 178-192. |
[36] | Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.S. Chen, X. Wang, Z.Y. Liu, X.G. Li, Corros. Sci. 118 (2017) 31-48. |
[37] | P. Ernst, R. Newman, Corros. Sci. 44 (2002) 927-941. |
[38] | D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, J.Z. Yao, C. Man, X.Q. Cheng, K. Xiao, X.G. Li, J. Mater. Sci. Technol. 35 (2019) 1499-1507. |
[39] | L.B. Niu, K. Nakada, Corros. Sci. 96 (2015) 171-177. |
[40] | G.Z. Meng, Y. Li, Y.W. Shao, T. Zhang, Y.Q. Wang, F.H. Wang, J. Mater. Sci. Technol. 30 (2014) 253-258. |
[41] | M. BenSalah, R. Sabot, E. Triki, L. Dhouibi, P. Refait, M. Jeannin, Corros. Sci. 86 (2014) 61-70. |
[42] | H. Luo, Q. Yu, C.F. Dong, G. Sha, Z.B. Liu, J.X. Liang, L. Wang, G. Han, X.G. Li, Corros. Sci. 139 (2018) 185-196. |
[43] | N. Hakiki, S. Boudin, B. Rondot, M.D.C. Belo, Corros. Sci. 37 (1995) 1809-1822. |
[44] | M. Carmezim, A. Simoes, M. Montemor, M.D.C. Belo, Corros. Sci. 47 (2005) 581-591. |
[45] | H.O. Finklea, J. Electrochem. Soc. 129 (1982) 2003-2008. |
[46] | N. Ramasubramanian, N. Preocanin, R. Davidson, J. Electrochem. Soc. 132 (1985) 793-798. |
[47] | S.S. Xin, M.C. Li, Russ. J. Electrochem. 50 (2013) 281-288. |
[48] | C. Man, C.F. Dong, Z.Y. Cui, K. Xiao, Q. Yu, X.G. Li, Appl. Surf. Sci. 427 (2018) 763-773. |
[49] | C.O.A. Olsson, Corros. Sci. 37 (1995) 467-479. |
[50] |
G. Okamoto, Corros. Sci. 13 (1973) 471-489.
DOI URL |
[51] | I. Nicic, D.D. Macdonald, J. Nucl. Mater. 379 (2008) 54-58. |
[52] | X.R. Zhang, J.L. Zhao, T. Xi, M.B. Shahzad, C.G. Yang, K. Yang, J. Mater. Sci. Technol. 34 (2018) 2149-2159. |
[53] | X.Q. Cheng, Y. Wang, X.G. Li, C.F. Dong, J. Mater. Sci. Technol. 34 (2018) 2104-2148. |
[54] |
H. Luo, H.Z. Su, B.S. Li, G.B. Ying, Appl. Surf. Sci. 439 (2018) 232-239.
DOI URL |
[55] | L.Q. Guo, B.J. Yang, J.Y. He, L.J. Qiao, Appl. Surf. Sci. 444 (2018) 48-55. |
[56] | M.U. Macdonald, S. Real, D.D. Macdonald, Electrochim. Acta 35 (1990) 1559-1566. |
[57] | M.C. Li, S.Z. Luo, C.L. Zeng, J.N. Shen, H.C. Lin, C.N. Cao, Corros. Sci. 46 (2004) 1369-1380. |
[58] | M.C. Li, M. Royer, D. Stien, A. Lecante, C. Roos, Corros. Sci. 50 (2008) 1975-1981. |
[59] | B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Electrochim. Acta 55 (2010) 6218-6227. |
[60] | N. Sato, Corrosion 45 (1989) 354-368. |
[61] | L.A.S. Ries, M. Da Cunha Belo, M.G.S. Ferreira, I.L. Muller, Corros. Sci. 50 (2008) 676-686. |
[62] | L. Hamadou, A. Kadri, N. Benbrahim, Corros. Sci. 52 (2010) 859-864. |
[63] | N.E. Hakiki, Corros. Sci. 53 (2011) 2688-2699. |
[64] | X.G. Feng, X.Y. Lu, Y. Zuo, D. Chen, Corros. Sci. 82 (2014) 347-355. |
[65] | N. Darwish, F. Hilbert, W. Lorenz, H. Rosswag, Electrochim. Acta 18 (1973) 421-425. |
[66] | G. Burstein, D. Davies, Corros. Sci. 20 (1980) 1143-1155. |
[67] | A. Brooks, C. Clayton, K. Doss, Y. Lu, J. Electrochem. Soc. 133 (1986) 2459-2464. |
[68] | S. Ziemniak, M. Jones, K. Combs, J. Sol. Chem. 27 (1998) 33-66. |
[69] | Z.G. Duan, F. Arjmand, L.F. Zhang, H. Abe, J. Nucl. Sci. Technol. 53 (2016) 1435-1446. |
[70] | D.D. Macdonald, Pure Appl. Chem. 71 (1999) 951-978. |
[71] | R.W. Revie, Hoboken New Jersey, 2008, pp. 22-24. |
[72] | B. Zhang, X.L. Ma, J. Mater. Sci. Technol. 35 (2019) 1455-1465. |
[73] | F. Xue, X. Wei, J.H. Dong, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 35 (2019) 596-603. |
[74] | T. Bellezze, G. Roventi, R. Fratesi, Electrochim. Acta 49 (2004) 3005-3014. |
[75] | R. Leiva-García, M.J. Mu˜noz-Portero, J. García-Antón, Corros. Sci. 52 (2010) 950-959. |
[76] | S. Marcelin, N. Pébère, S. Régnier, Electrochim. Acta 87 (2013) 32-40. |
[77] | J.R. Galvele, J. Electrochem. Soc. 123 (1976) 464-474. |
[78] | R. Newman, Electrochem. Soc. Interface 19 (2010) 33-38. |
[79] | W.M. Tian, S.M. Li, N. Du, S.B. Chen, Q.Y. Wu, Corros. Sci. 93 (2015) 242-255. |
[1] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
[2] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[3] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[4] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
[5] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[6] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[7] | S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel [J]. J. Mater. Sci. Technol., 2020, 37(0): 161-172. |
[8] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[9] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[10] | Shuang Liang, Gang He, Die Wang, Fen Qiao. Atomic-layer-deposited (ALD) Al2O3 passivation dependent interface chemistry, band alignment and electrical properties of HfYO/Si gate stacks [J]. J. Mater. Sci. Technol., 2019, 35(5): 769-776. |
[11] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
[12] | Fang Xue, Xin Wei, Junhua Dong, Ini-Ibehe Nabuk Etim, Changgang Wang, Wei Ke. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34(8): 1349-1358. |
[13] | Xianbo Shi, Wei Yan, Dake Xu, Maocheng Yan, Chunguang Yang, Yiyin Shan, Ke Yang. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34(12): 2480-2491. |
[14] | Xuequn Cheng, Yi Wang, Xiaogang Li, Chaofang Dong. Interaction between austein-ferrite phases on passive performance of 2205 duplex stainless steel [J]. J. Mater. Sci. Technol., 2018, 34(11): 2140-2148. |
[15] | Hao Feng, Huabing Li, Xiaolei Wu, Zhouhua Jiang, Si Zhao, Tao Zhang, Dake Xu, Shucai Zhang, Hongchun Zhu, Binbin Zhang, Muxin Yang. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1781-1790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||