J. Mater. Sci. Technol. ›› 2021, Vol. 66: 163-176.DOI: 10.1016/j.jmst.2020.05.074
• Research Article • Previous Articles Next Articles
Fangqiang Ninga,b, Jibo Tana, Ziyu Zhanga, Xinqiang Wua,*(), Xiang Wanga, En-Hou Hana, Wei Kea
Received:
2020-04-19
Revised:
2020-05-27
Accepted:
2020-05-28
Published:
2021-03-10
Online:
2021-04-01
Contact:
Xinqiang Wu
About author:
* E-mail address: xqwu@imr.ac.cn (X. Wu).Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution[J]. J. Mater. Sci. Technol., 2021, 66: 163-176.
C | N | S | P | Mn | Ti | Al | Si | Cu | Fe | Cr | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
0.02 | 0.013 | 0.001 | 0.007 | 0.29 | 0.2 | 0.2 | 0.29 | 0.01 | 10.5 | 29.73 | 57.7 |
Table 1 Chemical composition of Alloy 690 used in the present work (wt.%).
C | N | S | P | Mn | Ti | Al | Si | Cu | Fe | Cr | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
0.02 | 0.013 | 0.001 | 0.007 | 0.29 | 0.2 | 0.2 | 0.29 | 0.01 | 10.5 | 29.73 | 57.7 |
Test ID | Chemical composition (mol/L) | Dissolved oxygen | |
---|---|---|---|
NaCl | Na2S2O3 | ||
NC1 | 0.01 | 0 | Aerated |
NC2 | 0.01 | 10-4 | Aerated |
NC3 | 0.01 | 0 | Deaerated |
NC4 | 0.01 | 10-4 | Deaerated |
Table 2 Solutions for crevice corrosion tests in the present work.
Test ID | Chemical composition (mol/L) | Dissolved oxygen | |
---|---|---|---|
NaCl | Na2S2O3 | ||
NC1 | 0.01 | 0 | Aerated |
NC2 | 0.01 | 10-4 | Aerated |
NC3 | 0.01 | 0 | Deaerated |
NC4 | 0.01 | 10-4 | Deaerated |
Fig. 2. Surface morphologies of crevice specimens after exposure tests in different solutions: (a) NC1, (b) NC2, (c) NC3, (d) NC4, in which each red point represents a region with the same morphology.
Fig. 3. SEM morphologies and XRD patterns of oxide films formed in different regions in NC2 solution: (a) region A, (b) region B, (c) region C, (d) XRD patterns.
Fig. 6. XPS depth profiles of Fe, Cr, Ni, O and S in oxide films formed in different regions in NC2 solution: (a) region A, (b) region B, (c) region C.
Element | Species | Binding energy (eV) | References |
---|---|---|---|
S | SO42- (2p) | 168.1-169.4 | [ |
SO32- (2p) | 166.0-167.0 | [ | |
S2- (2p) | 162.5, 163.7 | [ | |
O | O2- (1 s) | 530.3 | [ |
OH-(1 s) | 531.7 | [ | |
Ni | Ni0 (2p3/2) | 852.7 | [[ |
Ni0 sat (2p3/2) | 858.5 | [[ | |
Ni2+OX (2p3/2) | 854.4 | [[ | |
Ni2+OH (2p3/2) | 856.5 | [[ | |
Ni2+sat (2p3/2) | 861.7 | [[ | |
Cr | Cr0 (2p3/2) | 574.3 | [[ |
Cr3+OX (2p3/2) | 576.1 | [[ | |
Cr3+OH (2p3/2) | 577.6 | [[ | |
Fe | Fe0 (2p3/2) | 707.2 | [[ |
Fe2+ (2p3/2) | 709.0 | [[ | |
Fe3+ (2p3/2) | 711.3 | [[ |
Table 3 Binding energies of XPS peaks.
Element | Species | Binding energy (eV) | References |
---|---|---|---|
S | SO42- (2p) | 168.1-169.4 | [ |
SO32- (2p) | 166.0-167.0 | [ | |
S2- (2p) | 162.5, 163.7 | [ | |
O | O2- (1 s) | 530.3 | [ |
OH-(1 s) | 531.7 | [ | |
Ni | Ni0 (2p3/2) | 852.7 | [[ |
Ni0 sat (2p3/2) | 858.5 | [[ | |
Ni2+OX (2p3/2) | 854.4 | [[ | |
Ni2+OH (2p3/2) | 856.5 | [[ | |
Ni2+sat (2p3/2) | 861.7 | [[ | |
Cr | Cr0 (2p3/2) | 574.3 | [[ |
Cr3+OX (2p3/2) | 576.1 | [[ | |
Cr3+OH (2p3/2) | 577.6 | [[ | |
Fe | Fe0 (2p3/2) | 707.2 | [[ |
Fe2+ (2p3/2) | 709.0 | [[ | |
Fe3+ (2p3/2) | 711.3 | [[ |
Fig. 18. (a), (b) and (c) Schematic of the crevice corrosion process of Alloy 690 in NC2 solution, (d), (e) and (f) Schematic of the pitting corrosion of Alloy 690 during the crevice corrosion in NC4 solution.
[1] | S.J. Zinkle, G.S. Was, Acta Mater. 61 (2013) 735-758. |
[2] | J. Liao, J. Tan, X. Wu, L. Tang, H. Qian, Y. Xie, Corros. Sci. 141 (2018) 158-167. |
[3] | F. Ning, X. Wu, J. Tan, J. Nucl. Mater. 515 (2019) 326-337. |
[4] | F. Ning, J. Tan, Q. Wu, J. Mater. Sci. Technol. 47 (2020) 76-87. |
[5] | R.W. Staehle, J.A. Gorman, Corrosion 59 (2003) 931-994. |
[6] | R.W. Staehle, J.A. Gorman, Corrosion 60 (2004) 5-63. |
[7] | R.W. Staehle, J.A. Gorman, Corrosion 60 (2004) 115-180. |
[8] | G.R. Engelhardt, D.D. Macdonald, P.J. Millett, Corros. Sci. 41 (1999) 2165-2190. |
[9] | G.R. Engelhardt, D.D. Macdonald, P.J. Millett, Corros. Sci. 41 (1999) 2191-2211. |
[10] | J. Abellà, I. Balachov, D.D. Macdonald, P.J. Millet, Corros. Sci. 44 (2002) 191-205. |
[11] | D.-H. Xia, Y. Behnamian, J.-L. Luo, J. Electrochem. Soc. 166 (2019) C49-C64. |
[12] | B. Lu, J. Luo, Y. Lu, Electrochim. Acta 53 (2008) 4122-4136. |
[13] | S.J. Mulford, D. Tromans, Corrosion 44 (1988) 891-900. |
[14] | R. Roberge, Corrosion 44 (1988) 274-280. |
[15] | A.A. Becerra Araneda, M.A. Kappers, M.A. Rodríguez, R.M. Carranza, Corrosion 74 (2018) 1214-1228. |
[16] | D. Xia, S. Song, R. Zhu, Y. Behnamian, C. Shen, J. Wang, J. Luo, Y. Lu, S. Klimas, Electrochim. Acta 111 (2013) 510-525. |
[17] | R.H. Newman, H.S. Isaacs, B. Alman, Corrosion 38 (1982) 261-265. |
[18] | C. Shen, D.H. Xia, H.Q. Fan, Y. Behnamian, A. Afacan, S.J. Klimas, J.L. Luo, Electrochim. Acta 233 (2017) 13-25. |
[19] | D.H. Xia, Y. Behnamian, X.Y. Chen, J.L. Luo, S. Klimas, J. Solid State Electrochem. 19 (2015) 3567-3578. |
[20] | I.J. Yang, Corrosion 49 (1993) 576-584. |
[21] | J.T. Ho, G.P. Yu, Corrosion 48 (1992) 147-158. |
[22] | Y. Wang, S. Song, J. Wang, Y. Behnamian, L. Xu, H. Fan, D.H. Xia, J. Electrochem. Soc. 166 (2019) C332-C344. |
[23] | W.T. Tsai, T.F. Wu, J. Nucl. Mater. 277 (2000) 169-174. |
[24] | C. Duret-Thual, D. Costa, W.P. Yang, P. Marcus, Corros. Sci. 39 (1997) 913-933. |
[25] | A. Garner, Corrosion 41 (1985) 587-591. |
[26] | W. Kuang, X. Wu, E.-H. Han, Corros.Sci. 63 (2012) 259-266. |
[27] | W. Kuang, X. Wu, E.-H. Han, Corros.Sci. 69 (2013) 197-204. |
[28] | D. Chen, X. Wu, E.-H. Han, H. Sun, Corrosion 71 (2015) 1213-1223. |
[29] | D. Chen, E.-H. Han, X. Wu, Corros. Sci. 111 (2016) 518-530. |
[30] | X. Zhong, E.-H. Han, X. Wu, Corros. Sci. 66 (2013) 369-379. |
[31] | H. Kim, Y.D. Lee, Corrosion 57 (2001) 547-556. |
[32] | R.S. Dutta, R. Tewari, P.K. De, Corros. Sci. 49 (2007) 303-318. |
[33] | R.S. Dutta, R. Tewari, Brit. Corros. J. 34 (2013) 201-205. |
[34] | J. Tan, X. Wu, E.-H. Han, W. Ke, X. Liu, F. Meng, X. Xu, Corros. Sci. 88 (2014) 349-359. |
[35] | C. Ma, Q. Peng, J. Mei, E.-H. Han, W. Ke, J. Mater. Sci. Technol. 34 (2018) 1823-1834. |
[36] | A.L. Neal, S. Techkarnjanaruk, A. Dohnalkova, D. McCready, B.M. Peyton, G.G. Geesey, Geochim. Cosmochim. Ac. 65 (2001) 223-235. |
[37] | B.J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, K. Siegbahn, Phys. Scr. 1 (1970) 286-298. |
[38] | S. Yuan, B. Liang, Y. Zhao, S.O. Corros, Sci. 74 (2013) 353-366. |
[39] | R.V. Siriwardane, J.M. Cook, J. Colloid. Interf. Sci. 114 (1986) 525-535. |
[40] | J.R. Mycroft, G.M. Bancroft, N.S. McIntyre, J.W. Lorimer, I.R. Hill, J. Electroanal. Chem. 292 (1990) 139-152. |
[41] | A. Machet, A. Galtayries, S. Zanna, L. Klein, V. Maurice, P. Jolivet, M. Foucault, P. Combrade, P. Scott, P. Marcus, Electrochim. Acta 49 (2004) 3957-3964. |
[42] | L. Marchetti, F. Miserque, S. Perrin, M. Pijolat, Surf. Interface Anal. 47 (2015) 632-642. |
[43] | A. Machet, A. Galtayries, P. Marcus, P. Combrade, P. Jolivet, P. Scott, Surf. Interface Anal. 34 (2002) 197-200. |
[44] | X. Zhong, X. Wu, E.-H. Han, J.Mater. Sci. Technol. 34 (2018) 561-569. |
[45] | J. Huang, X. Wu, E.-H. Han, Corros. Sci. 52 (2010) 3444-3452. |
[46] | G.H. Kelsall, I. Thompson, J. Appl. Electrochem. 23 (1993) 279-286. |
[47] | Y.J. Kim, P.L. Andresen, Corrosion 59 (2003) 584-596. |
[48] | L.-B. Niu, K. Nakada, Corros. Sci. 96 (2015) 171-177. |
[49] | L.-B. Niu, K. Okano, S. Izumi, K. Shiokawa, M. Yamashita, Y. Sakai, Corros. Sci. 132 (2018) 284-292. |
[50] | G.F. Kennell, R.W. Evitts, K.L. Heppner, Corros. Sci. 50 (2008) 1716-1725. |
[51] | B.D. Force, H. Pickering, JOM 47 (1995) 22-27. |
[52] | S.P. White, G.J. Weir, N.J. Laycock, Corros. Sci. 42 (2000) 605-629. |
[53] | Q. Yang, J.L. Luo, Electrochim. Acta 45 (2000) 3297-3937. |
[54] | B. Beverskog, I. Puigdomenech, Corrosion 55 (1999) 1077-1087. |
[55] | B. Beverskog, I. Puigdomenech, Corros. Sci. 39 (1997) 43-57. |
[56] | B. Beverskog, I. Puigdomenech, Corros. Sci. 38 (1996) 2121-2135. |
[57] | B. Beverskog, I. Puigdomenech, Corros. Sci. 39 (1997) 969-980. |
[58] | L. Marchetti, S. Perrin, F. Jambon, M. Pijolat, Corros. Sci. 102 (2016) 24-35. |
[59] | J. Wang, J. Wang, J. Mater. Sci. Technol. 31 (2015) 1039-1046. |
[60] | J. Wang, J. Wang, H. Ming, Z. Zhang, E.-H. Han, J.Mater. Sci. Technol. 34 (2018) 1419-1427. |
[61] | Z. Wang, J. Wang, Y. Behnamian, Z. Gao, J. Wang, D.-H. Xia, Corros.Eng. Sci. Techn. 53 (2018) 206-213. |
[62] | Y. Sun, S. Wu, D.-H. Xia, L. Xu, J. Wang, S. Song, H. Fan, Z. Gao, J. Zhang, Z. Wu, Corros. Sci. 140 (2018) 260-271. |
[63] | J. Kittel, F. Ropital, F. Grosjean, E.M.M. Sutter, B. Tribollet, Corros. Sci. 66 (2013) 324-329. |
[64] | C. Liu, R.I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, H. Terryn, Corros. Sci. 138 (2018) 96-104. |
[65] | X. Li, F. Huang, J. Wang, E.-H. Han, W. Ke, Acta Metall. Sin. 47 (2011) 847-852. |
[66] | D.D. Macdonald, J. Electrochem. Soc. 139 (1992) 3432-3449. |
[67] | D.D. Macdonald, M.U. Macdonald, J. Electrochem. Soc. 137 (1990) 2395-2402. |
[68] | D.H. Hur, J.H. Han, U.C. Lee, Y.S. Park, Corrosion 62 (2006) 591-597. |
[69] | D.-H. Xia, J. Wang, Z. Qin, Z. Gao, Z. Wu, J. Wang, L. Yang, W. Hu, J.-L. Luo, Mater. Chem. Phys. 233 (2019) 133-140. |
[70] | D.-H. Xia, Y. Behnamian, H.-N. Feng, H.-Q. Fan, L.-X. Yang, C. Shen, J.-L. Luo, Y.-C. Lu, S. Klimas, Corros. Sci. 87 (2014) 265-277. |
[1] | Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C [J]. J. Mater. Sci. Technol., 2021, 65(0): 126-136. |
[2] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
[3] | Jinlong Du, Cai Li, Zumin Wang, Yuan Huang. Direct alloying of immiscible molybdenum-silver system and its thermodynamic mechanism [J]. J. Mater. Sci. Technol., 2021, 65(0): 18-28. |
[4] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[5] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[6] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[7] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[8] | Cheng Gu, Yan Lu, Alan A. Luo. Three-dimensional visualization and quantification of microporosity in aluminum castings by X-ray micro-computed tomography [J]. J. Mater. Sci. Technol., 2021, 65(0): 99-107. |
[9] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[10] | Jun Liu, Yuanyuan Gong, Fengqi Zhang, Yurong You, Guizhou Xu, Xuefei Miao, Feng Xu. Large, low-field and reversible magnetostrictive effect in MnCoSi-based metamagnet at room temperature [J]. J. Mater. Sci. Technol., 2021, 76(0): 104-110. |
[11] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[12] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[13] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[14] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[15] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||