J. Mater. Sci. Technol. ›› 2021, Vol. 65: 126-136.DOI: 10.1016/j.jmst.2020.04.079
• Research Article • Previous Articles Next Articles
Zhongdi Yua,b, Minghui Chena,b,*(), Jinlong Wanga,b, Fengjie Lia,b, Shenglong Zhuc, Fuhui Wanga,b
Received:
2020-03-08
Revised:
2020-03-31
Accepted:
2020-04-02
Published:
2021-02-28
Online:
2021-03-15
Contact:
Minghui Chen
About author:
* Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China.E-mail address: mhchen@mail.neu.edu.cn (M. Chen).Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C[J]. J. Mater. Sci. Technol., 2021, 65: 126-136.
Kerosene flow (GPH) | Oxygen flow (SCFH) | Air flow (SCFH) | Rotating speed (rpm) | Stress (MPa) | Distance (mm) |
---|---|---|---|---|---|
6 | 2000 | 23 | 5.5 | 83 | 360 |
Table 1 HVOF parameters of spraying the WC-12Co composite coating.
Kerosene flow (GPH) | Oxygen flow (SCFH) | Air flow (SCFH) | Rotating speed (rpm) | Stress (MPa) | Distance (mm) |
---|---|---|---|---|---|
6 | 2000 | 23 | 5.5 | 83 | 360 |
SiO2 | B2O3 | Li2O | Al2O3 | Na2O | CaO | CaF2 |
---|---|---|---|---|---|---|
49.5 | 8 | 2.5 | 15 | 3 | 15 | 7 |
Table 2 Nominal composition of the enamel coating (wt%).
SiO2 | B2O3 | Li2O | Al2O3 | Na2O | CaO | CaF2 |
---|---|---|---|---|---|---|
49.5 | 8 | 2.5 | 15 | 3 | 15 | 7 |
Fig. 2. Cross-sectional microstructures of the 316 stainless steel after tribo-corrosion in molten Zn-0.2Al for: (A) 6000 cycles, and (B) 30,000 cycles.
Fig. 4. Surface morphology (A, C) and cross-sectional microstructure (B, D) of the WC-12Co composite coating after wear at 460 °C in molten Zn-0.2Al alloy for: (A, B) 6000 cycles, and (C, D) 30,000 cycles.
Fig. 5. TEM microstructure at interface between the WC-12Co composite coating and the corrosion product after tribo-corrosion at 460 °C in molten Zn-0.2Al for 6000 cycles, along with corresponding SAED patters at areas “a” and “b” and element mappings at area “c”.
Fig. 7. Surface morphology (A, C) and cross-sectional microstructure (B, D) of the enamel coating after wear at 460 °C in molten Zn-0.2Al alloy for: (A, B) 6000 cycles, and (C, D) 30,000 cycles.
Fig. 8. TEM microstructure at interface between the enamel coating and the glaze layer after tribo-corrosion at 460 °C in molten Zn-0.2Al for 6000 cycles, along with corresponding SAED patters at areas “a”, “b”, “c”, and “d”, and element mappings at area “e”.
316 stainless steel | WC-12Co | Enamel | |
---|---|---|---|
Young’s modulus | 252.7 | 561.7 | 233.7 |
Hardness (GPa) | 3.3 | 23.7 | 4.3 |
Table 3 Young’s modulus and hardness of the 316 stainless steel and the two coatings.
316 stainless steel | WC-12Co | Enamel | |
---|---|---|---|
Young’s modulus | 252.7 | 561.7 | 233.7 |
Hardness (GPa) | 3.3 | 23.7 | 4.3 |
Fig. 11. Schematic diagram illustrating tribo-corrosion process in molten Zn-0.2Al at 460 °C of: (A) the WC-12Co composite coating, and (B) the enamel coating.
[1] |
A.R. Marder, Prog. Mater. Sci. 45 (2000) 191-271.
DOI URL |
[2] |
S.M.A. Shibli, B.N. Meena, R. Remya, Surf. Coat. Technol. 262 (2015) 210-215.
DOI URL |
[3] |
C. Qiao, L. Shen, L. Hao, X. Mu, J. Dong, W. Ke, J. Liu, B. Liu, J. Mater. Sci. Technol. 35 (2019) 2345-2356.
DOI URL |
[4] |
L. Wang, Y. Zhou, G. Chen, P. Xu, S. Rao, Eng. Failure Anal. 58 (2015) 8-18.
DOI URL |
[5] |
Z. Yu, M. Chen, F. Li, S. Zhu, F. Wang, Corros. Sci. 165 (2020), 108411.
DOI URL |
[6] | F. Ajersch, F. llinca, Steel.Res. Int. 89 (2018) 1-12. |
[7] |
X. Ren, X. Mei, J. She, J. Ma, J. Iron Steel Res. Int. 14 (2007) 130-136.
DOI URL |
[8] |
K. Zhang, Wear 255 (2003) 545-555.
DOI URL |
[9] |
X. Wang, Y. Liang, J. Mater. Res. 16 (2001) 1585-1592.
DOI URL |
[10] |
S. Ma, J. Xing, H. Fu, D. Yi, J. Zhang, Y. Li, Z. Zhang, B. Zhu, S. Ma, Corros. Sci. 53 (2011) 2826-2834.
DOI URL |
[11] |
S. Ma, J. Xing, H. Fu, P. Lyu, B. Dsouza, Y. Gao, G. Liu, Y. Wang, J. Zhang, Wear 412-413 (2018) 60-68.
DOI URL |
[12] |
M.X. Yao, J.B.C. Wu, R. Liu, Mater. Sci. Eng. A 407 (2005) 299-305.
DOI URL |
[13] |
Y. Wang, J. Xing, S. Ma, G. Liu, Y. He, D. Yang, Y. Bai, Corros. Sci. 98 (2015) 240-248.
DOI URL |
[14] |
D. Yan, J. He, B. Tian, Y. Dong, X. Li, J. Zhang, L. Xiao, W. Jing, Surf. Coat. Technol. 201 (2006) 2662-2666.
DOI URL |
[15] |
G.J. Yang, C.J. Li, S.J. Zhang, C.X. Li, J. Therm. Spray Technol. 17 (2008) 782-787.
DOI URL |
[16] |
Y. Dong, D. Yan, J. He, J. Zhang, X. Li, Surf. Coat. Technol. 201 (2006) 2455-2459.
DOI URL |
[17] |
B.G. Seong, S.Y. Hwang, M.C. Kim, K.Y. Kim, Surf. Coat. Technol. 138 (2001) 101-110.
DOI URL |
[18] |
J. Zhang, C. Deng, J. Song, C. Deng, M. Liu, K. Zhou, Surf. Coat. Technol. 235 (2013) 811-818.
DOI URL |
[19] |
G.J. Yang, P.H. Gao, C.X. Li, C.J. Li, Appl. Surf. Sci. 332 (2015) 80-88.
DOI URL |
[20] |
Z. Yu, M. Chen, K. Chen, D. Xie, S. Zhu, F. Wang, Corros. Sci. 148 (2019) 228-236.
DOI URL |
[21] |
M. Chen, W. Li, M. Shen, S. Zhu, F. Wang, Corros. Sci. 74 (2013) 178-186.
DOI URL |
[22] |
M. Chen, M. Shen, X. Wang, S. Zhu, F. Wang, J. Mater. Sci. Technol. 28 (2012) 433-438.
DOI URL |
[23] |
M. Chen, M. Shen, S. Zhu, F. Wang, X. Wang, Corros. Sci. 73 (2013) 331-341.
DOI URL |
[24] |
Y. Liao, B. Zhang, M. Chen, M. Feng, J. Wang, S. Zhu, F. Wang, Corros. Sci. 167 (2020), 108526.
DOI URL |
[25] |
M. Jiang, X. Yang, S. Pan, B.W. Krakauer, M. Zhu, J. Mater. Sci. Technol. 28 (2012) 737-744.
DOI URL |
[26] |
V. Imbeni, J.J. Kruzic, G.W. Marshall, S.J. Marshall, R.O. Ritchie, Nat. Mater. 4 (2005) 229-232.
URL PMID |
[27] |
M.J. Liu, M. Zhang, X.F. Zhang, G.R. Li, Q. Zhang, C.X. Li, C.J. Li, G.J. Yang, Appl. Surf. Sci. 486 (2019) 80-92.
DOI URL |
[28] |
M.J. Liu, K.J. Zhang, Q. Zhang, M. Zhang, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 471 (2019) 950-959.
DOI URL |
[29] |
M.J. Liu, M. Zhang, Q. Zhang, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 428 (2018) 877-884.
DOI URL |
[30] |
X. Yan, H. Wang, X. Liu, C. Hou, Q. Qiu, X. Song, J. Eur. Ceram. Soc. 39 (2019) 3023-3034.
DOI URL |
[31] |
K. Liu, Z. Wang, Z. Yin, L. Cao, J. Yuan, Ceram. Int. 44 (2018) 18711-18718.
DOI URL |
[32] |
H. Xie, Z. Jiang, W. Yuen, Tribol. Int. 44 (2011) 971-979.
DOI URL |
[33] |
D. Arola, C.L. Williams, Int. J. Fatigue 24 (2002) 923-930.
DOI URL |
[34] |
S. Frenznick, S. Swaminathan, M. Stratmann, M. Rohwerder, J. Mater. Sci. 45 (2010) 2106-2111.
DOI URL |
[35] |
H. Wang, Y. Yu, S. Li, Scripta Mater. 47 (2002) 57-61.
DOI URL |
[36] |
A. Munoz, A.D. Rodriguez, J. Castaing, Radiat. Eff. Defects Solids 137 (1995) 213-215.
DOI URL |
[37] | V. Fuertes, M.J. Cabrera, J. Seores, D. Munoz, J.F. Fernandez, E. Enriquez, Mater. Des. 168 (2019) 1-10. |
[1] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
[2] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[3] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
[4] | Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃ [J]. J. Mater. Sci. Technol., 2020, 45(0): 125-132. |
[5] | Jun Gao, Jibo Tan, Ming Jiao, Xinqiang Wu, Lichen Tang, Yifeng Huang. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water [J]. J. Mater. Sci. Technol., 2020, 42(0): 163-174. |
[6] | L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 42(0): 85-96. |
[7] | Jiazhen Wang, Jianqiu Wang, Hongliang Ming, Zhiming Zhang, En-Hou Han. Effect of temperature on corrosion behavior of alloy 690 in high temperature hydrogenated water [J]. J. Mater. Sci. Technol., 2018, 34(8): 1419-1427. |
[8] | Xiangyu Zhong, Xinqiang Wu, En-Hou Han. Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 °C Aerated Supercritical Water [J]. J. Mater. Sci. Technol., 2018, 34(3): 561-569. |
[9] | Huang Dong, Zhang Mingyu, Huang Qizhong, Wang Liping, Tong Kai. Mechanical Property, Oxidation and Ablation Resistance of C/C-ZrB2-ZrC-SiC Composite Fabricated by Polymer Infiltration and Pyrolysis with Preform of Cf/ZrB2 [J]. J. Mater. Sci. Technol., 2017, 33(5): 481-486. |
[10] | Jiazhen Wang, Jianqiu Wang, En-Hou Han. Influence of Conductivity on Corrosion Behavior of 304 Stainless Steel in High Temperature Aqueous Environment [J]. J. Mater. Sci. Technol., 2016, 32(4): 333-340. |
[11] | Hojat Ahmadi, Meisam Nouri. Effects of yttrium addition on microstructure, hardness and resistance to wear and corrosive wear of TiNi Alloy [J]. J Mater Sci Technol, 2011, 27(9): 851-855. |
[12] | Dongbai XIE, Fuhui WANG. Oxidation and Hot Corrosion Behavior of a Composite Coating System [J]. J Mater Sci Technol, 2003, 19(06): 567-570. |
[13] | Haitao MA, Lai WANG, Yuanshi LI. Accelerated Corrosion of Pure Fe Induced by Gaseous ZnCl2 at High Temperatures [J]. J Mater Sci Technol, 2003, 19(05): 456-458. |
[14] | P.Saltykov, V.T.Witusiewicz, I.Arpshofen, H.J.Seifert, F.Aldinger. Enthalpy of Mixing of Liquid Al-Cr and Cr-Ni Alloys [J]. J Mater Sci Technol, 2002, 18(02): 167-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||