Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 42 Issue (0): 85-96    DOI: 10.1016/j.jmst.2019.08.051
Orginal Article Current Issue | Archive | Adv Search |
Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys
L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang*(), J.W. Qiao*()
Research Center for High-Entropy Alloys, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Download:  HTML  PDF(8260KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys (HEAs) were investigated in air and simulated acid rain under different normal loads (5, 7, 10, and 12 N) at ambient temperature. The results revealed that as-cast HEAs were only composed of FCC phase, while the volume fraction of FCC phase in the nitrided alloys was significantly reduced. Moreover, the hard phases of AlN, CrN, Fe4N, and TiN phases were formed in the nitrided alloys. The thickness of the nitriding layer was about 8.4 μm. The hardness increased from 8.7 GPa in as-cast alloys to 14.5 GPa in the nitrided alloys. In addition, under the same conditions, the friction coefficient of the nitrided alloys was higher than that of as-cast alloys, but the wear rate was generally lower than that of as-cast alloys. Furthermore, the wear rate of the nitrided alloys was the lowest in acid rain due to the lubrication, cleaning, and cooling in the liquid environment. In air, dominating wear mechanisms in as-cast and nitrided alloys were abrasive, delamination, and adhesive wears. And, the wear mechanism of as-cast and nitrided alloys in acid rain was mainly abrasive and corrosion wears.

Key words:  Abrasive wear      Hardness      Corrosive wear      Microstructure      Wear mechanism     
Received:  23 May 2019     
Corresponding Authors:  Yang H.J.,Qiao J.W.     E-mail:  pineyang@126.com;qiaojunwei@gmail.com

Cite this article: 

L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys. J. Mater. Sci. Technol., 2020, 42(0): 85-96.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.08.051     OR     https://www.jmst.org/EN/Y2020/V42/I0/85

Fig. 1.  Schematic diagram of friction and wear tests.
H+ K+ Na+ Ca2+ Mg2+ Cl- SO42-
10 0.015 0.015 0.17 0.022 0.022 5.19
Table 1  Chemical composition of acid rain (×10-3 mol/L).
Fig. 2.  XRD patterns of as-cast and nitrided Ni45(FeCoCr)40(AlTi)15 HEAs.
Al Co Cr Fe Ni Ti
3 9 6 8 10 4
7.5 13.3 13.3 13.3 45 7.5
Table 2  Valence electrons and content of elements in alloys (at.%).
Fig. 3.  Microstructure of (a) as-cast and (b) nitrided Ni45(FeCoCr)40(AlTi)15 HEAs.
Composition (at.%) Al Co Cr Fe Ni Ti
DR 6.6. 14.4 12.9 14.3 47.5 4.4
ID 2.3 12.2 19.3 12.2 41.7 12.4
Table 3  Chemical compositions of different regions in as-cast Ni45(FeCoCr)40(AlTi)15 HEAs.
Fig. 4.  SEM micrograph (a) and EDS analysis (b, c) of a cross section of nitrided Ni45(FeCoCr)40(AlTi)15 HEAs.
Fig. 5.  Nona-hardness on the surface of Ni45(CoCrFe)40(AlTi)15 HEAs: (a) as-cast alloy; (b) nitrided alloy.
Fig. 6.  Acoustic emission signal obtained during scratch test of nitrided layer.
Fig. 7.  Friction coefficient as a function of sliding time for HEAs: (a) as-cast alloys, in air; (b) as-cast alloys, in acid rain; (c) nitrided alloys, in air; and (d) nitrided alloys, in acid rain.(e)as-cast alloys, in deionized water.(f) nitride alloys, in deionized water.
Friction coefficient
Air Rain Deionized
5 N 7 N 10 N 12 N 5 N 7 N 10 N 12 N 5 N 7 N 10 N 12 N
As-cast 0.21 0.42 0.38 0.18 0.15 0.14 0.10 0.20 0.38 0.41 0.49 0.38
Nitrided 0.6 0.6 0.58 0.58 0.4 0.39 0.38 0.38 0.5 0.32 0.42 0.31
Table 4  Average friction coefficient of as-cast and nitrided Ni45(FeCoCr)40(AlTi)15 HEAs under different conditions.
Fig. 8.  Wear rate as a function of the normal load for as-cast and nitrided Ni45(FeCoCr)40(AlTi)15 HEAs: (C-A): as-cast, in air; (C-R): as-cast, in acid rain; (N-A): nitrided alloy, in air; and (N-R): nitrided alloy, in acid rain. (C-D): as-cast, in deionized water (N-D): nitride alloy, in deionized water.
Wear rate (× 10-5 mm3/(N m))
Air Rain Deionized
5 N 7 N 10 N 12 N 5 N 7 N 10 N 12 N 5 N 7 N 10 N 12 N
As-cast 5.91 7.31 9.85 7.01 6.61 7.30 5.90 4.65 5.25 3.89 4.35 6.69
Nitrided 1.60 3.85 4.73 2.66 0.40 0.43 0.58 2.80 2.02 3.35 4.04 4.26
Table 5  Average wear rate of as-cast and nitrided Ni45(FeCoCr)40(AlTi)15 HEAs under different conditions.
Fig. 9.  Surface morphologies of as-cast and nitrided alloys after soaking for 5 h in acid rain: (a) as-cast alloys; and (b) nitrided alloys.
Fig. 10.  SEM images of worn surface under different conditions: (a) as-cast alloys, in air; (b) as-cast alloys, in acid rain, (c) nitrided alloys, in air, (d) nitrided alloy, in acid rain, (e) as-cast alloys, in deionized water, and (f) nitrided alloys, in deionized water.
Al Co Cr Fe Ni Ti O
5 N Surface 6.8 11.0 11.3 11.3 36.7 6.5 16.4
Debris 3.2 5.6 5.7 5.4 18.1 3.4 58.7
7 N Surface 7.2 13.4 13.9 14.0 42.8 6.3 2.4
Debris 5.5 9.0 9.2 8.8 29.6 5.6 32.3
10 N Surface 6.6 12.9 13.5 13.7 40.5 6.1 6.7
Debris 3.4 5.6 5.7 5.5 17.8 3.4 58.7
12 N Surface 7.8 11.8 12.1 11.6 37.9 6.8 12.0
Debris 4.1 4.6 5.4 4.9 15.6 3.2 62.2
Table 6  EDS analysis results of wear debris and worn surfaces of as-cast Ni45(FeCoCr)40(AlTi)15 HEAs in air (at.%).
Al Co Cr Fe Ni Ti O Cl
5 N Surface 4.3 13.1 10.4 10.9 51.4 5.1 4.7 0.2
Debris 5.7 8.9 8.8 8.6 24.0 3.6 38.9 1.5
7 N Surface 3.9 12.6 12.8 13.1 41.9 5.0 10.3 0.4
Debris 6.2 8.9 9.0 7.9 44.8 6.2 18.1 0.2
10 N Surface 1.7 14.1 14.6 13.8 41.7 7.3 6.5 0.3
Debris 5.8 12.0 8.0 9.4 52.5 5.8 6.9 0.1
12 N Surface 10.4 10.2 7.5 7.3 43.5 12.8 7.8 0.5
Debris 4.6 12.4 11.4 12.4 44.2 4.5 9.7 0.8
Table 7  EDS analysis results of wear debris and worn surfaces of nitrided Ni45(FeCoCr)40(AlTi)15 HEAs in air (at.%).
Fig. 11.  XPS analysis of nitrided Ni45(FeCoCr)40(AlTi)15 HEAs in acid rain: (a) Al element; (b) Co element; (c) Cr element; (d) Fe element; (e) Ni element; (f) Ti element; (g) N element; and (h) O element.
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (5) (2004) 299-303.
[2] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103 (1) (2007) 41-46.
[3] S. Guo, C.T. Liu, Prog. Nat. Sci. 21 (6) (2011) 433-446.
[4] X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2-3) (2012) 233-238.
[5] S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (10) (2011) 213.
[6] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (6) (2010) 534-538.
[7] W.H. Wu, C.C. Yang, J.W. Yeh, Stud. Dialect. Nat. 31 (6) (2006) 737-747.
[8] M.R. Chen, S.J. Lin, J.W. Yeh, M.H. Chuang, S.K. Chen, Y.S. Huang, Metall. Mater. Trans. A 37 (5) (2006) 1363-1369.
[9] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15 (3) (2007) 357-362.
[10] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90 (18) (2007) 253.
[11] Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.L. Wang, L. Yang, K. An, C.T. Liu, Scripta Mater. 64 (9) (2011) 868-871.
[12] G. Bernd, H. Anton, C. Dhiraj, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (6201) (2014) 1153.
[13] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59 (16) (2011) 6308-6317.
[14] W.Y. Tang, J.W. Yeh, Metall. Mater. Trans. A 40 (6) (2009) 1479-1486.
[15] Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao, Mater. Chem. Phys. (2017) 1-7.
[16] M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk, J. Qiao, J. Mater. Res. 33 (19) (2018) 3310-3320.
[17] T. Egami, Y. Waseda, J. Non-cryst, Solids 64 (1) (1984) 113-134.
[18] L. Zhang, Y. Zhou, X. Jin, X. Du, B. Li, Scr. Mater. 146(2018) 226-230.
[19] D.C. Hofmann, Science 329 (5997) (2010) 1294-1295.
[20] S. Pauly, G. Liu, G. Wang, J. Das, K.B. Kim, U. Kuhn, D.H. Kim, J. Eckert, Appl. Phys. Lett. 95 (10) (2009) 2513.
[21] Y.S. Kim, K.S. Kim, C.W. Hwang, K. Suganuma, J. Alloys. Compd. 352 (1) (2003) 237-245.
[22] F. Ochoa, J.J. Williams, N. Chawla, JOM 55 (6) (2003) 56-60.
[23] Y.L. Zhang, H.Y. Jiang, Z. Ma, F.S. Shan, Z.Y. Jia, J. Mater. Process. Technol. 207 (1-3) (2008) 107-111.
[24] T. Czerwiec, H. Michel, E. Bergmann, Surf. Coat. Technol. 108-109 (98) (1998) 182-190.
[25] K.A. Kobe, J. Chem. Educ. 28 (4) (1951) 1-8.
[26] T.E. Fischer, M.P. Anderson, S. Jahanmir, R. Salher, Wear 124 (2) (1988) 133-148.
[27] F.J.T. Quinn, Tribol. Int. 16 (5) (1983) 257-271.
[28] T.F.J. Quinn, Tribol. Int. 16 (6) (1983) 305-315.
[29] N.P. Suh, S. Jahanmir, E.P. Abrahamson, A.P.L. Turner, J. Tribol. 96 (4) (1974) 631.
[30] W.U. Hong, I. Baker, Y. Liu, W.U. Xiao-lan, Trans. Nonferrous Met. Soc. 22 (3) (2012) 585-589.
[31] X.Y. Wang, D.Y. Li, Tribol. Lett. 11 (2) (2001) 117-120.
[32] B. Cantor, G.A. Chadwick, J. Mater. Sci. Technol. 10 (4) (1975) 578-588.
[33] D.R. Crow, Principles and Applications of Electrochemistry, Wiley, New York, 1979, pp. 151.
[34] D. Xiu, G.E. Karniadakis, J. Comput. Phys. 187 (1) (2003) 137-167.
[35] B. Chalmers, Physical Metallurgy, Wiley, New York, 1959, pp. 308.
[36] J. Yang, J. Ma, Q. Bi, W. Liu, Q. Xue, Mater. Sci. Eng. A 490 (1) (2008) 90-94.
[37] J.W. Qiao, H.Y. Ye, Y.S. Wang, S. Pauly, H.J. Yang, Z.H. Wang, Mater. Sci. Eng. A 585 (22) (2013) 277-280.
[38] C.C. Koch, O.B. Cavin, C.G. Mckamey, J.O. Scarbrough, Appl. Phys. Lett. 43 (11) (1983) 1017-1019.
[39] M. Emami, H.M. Ghasemi, J. Rassizadehghani, Adv. Mater. Res. 264-265 (100) (2011) 1982-1987.
[40] J. Jiang, F.H. Stott, M.M. Stack, Wear 256 (9) (2004) 973-985.
[41] J. Jiang, F.H. Stott, M.M. Stack, Tribol. Int. 31 (5) (1998) 245-256 (12).
[42] P.J. Tao, Y.Z. Yang, Q. Ru, J. Alloys. Compd. 492 (1) (2010) L36-L39.
[43] F.P. Bowden, D.F. Tabor, The Friction and Lubrication of Solids: Part II, At The Clarendon Press, 1950.
[44] X. Lin, Z. Bai, Y. Liu, B. Tang, H. Yang, J. Alloys. Compd. 686(2016) 866-873.
[45] P. Maaß, P. Peißer, 1. Corrosion and Corrosion Protection, Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
[46] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble Jr., NIST Standard Reference Database 20, Version 3.4 (web version), 2003 http://srdata.nist.gov/xps/.
[1] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[2] Zhongwei Wang, Yu Yan, Yang Wang, Yanjing Su, Lijie Qiao. Lifecycle of cobalt-based alloy for artificial joints: From bulk material to nanoparticles and ions due to bio-tribocorrosion[J]. 材料科学与技术, 2020, 46(0): 98-106.
[3] P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems[J]. 材料科学与技术, 2020, 45(0): 215-229.
[4] Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. 材料科学与技术, 2020, 45(0): 23-34.
[5] Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. 材料科学与技术, 2020, 46(0): 1-11.
[6] Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study[J]. 材料科学与技术, 2020, 43(0): 119-125.
[7] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
[8] Xiaojun Sun, Jie He, Bin Chen, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Hongri Hao. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys[J]. 材料科学与技术, 2020, 44(0): 201-208.
[9] Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels[J]. 材料科学与技术, 2020, 45(0): 1-14.
[10] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[11] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[12] Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications[J]. 材料科学与技术, 2020, 41(0): 191-198.
[13] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[14] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[15] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.