J. Mater. Sci. Technol. ›› 2021, Vol. 68: 132-139.DOI: 10.1016/j.jmst.2020.08.009
• Research Article • Previous Articles Next Articles
Huajing Xionga,b, Jianan Fua, Jinyao Lia, Rashad Alia, Hong Wanga, Yifan Liua,*(), Hua Suc,d, Yuanxun Lic,d, Woon-Ming Laue, Nasir Mahmooda,f, Chunhong Mua, Xian Jiana,g,*(
)
Received:
2020-04-17
Revised:
2020-06-06
Accepted:
2020-06-06
Published:
2021-03-30
Online:
2021-05-01
Contact:
Yifan Liu,Xian Jian
About author:
jianxian@uestc.edu.cn (X. Jian).Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection[J]. J. Mater. Sci. Technol., 2021, 68: 132-139.
Fig. 1. (a) Schematic illustration for the fabrication of α-Fe2O3@C hybrid structure, (b) SEM image of α-Fe2O3, (c) SEM image of α-Fe2O3@C, XRD patterns of (d) α-Fe2O3, (e) Fe3O4@C and (f) α-Fe2O3@C NCs, (g) Raman spectra of α-Fe2O3, Fe3O4@C and α-Fe2O3@C NCs and (h) the peak deconvolution of Raman spectra for α-Fe2O3@C NCs from 890 to 2000 cm-1.
Fig. 2. (a) TEM image of α-Fe2O3@C NCs, (b) HRTEM image of α-Fe2O3@C NCs representing the presence of 10 nm amorphous carbon layer, (c) HRTEM image of α-Fe2O3@C NCs (inset showing the FFT image), elemental mapping of the α -Fe2O3@C NR: (d) Fe, (e) C and (f) O elements.
Fig. 4. (a) The sensitivity curves of α-Fe2O3 to ethanol gas at various concentration of 300, 400 and 500 ppm at increasing temperature, (b) the response curves of α-Fe2O3 and (c) the sensitivity curve of the α-Fe2O3 to different concentrations of ethanol gas at fixed 370 °C. (d) The sensitivity curves of α-Fe2O3@C to ethanol gas at various concentration of 30, 40, 50 and 60 ppm at different temperatures, (e) the response curves of α-Fe2O3@C and (f) the sensitivity curve of the α-Fe2O3@C to different concentrations of ethanol gas at fixed 300 °C temperature.
Sensing Materials | Concentration (ppm) | Response (Ra/Rg)a | Temp. (°C) | References |
---|---|---|---|---|
α-Fe2O3@C | 10 ppm | 5.89 | 300 °C | This work |
100 ppm | 26.05 | |||
200 ppm | 40.23 | |||
500ppm | 57.40 | |||
Fe2O3/Co3O4 | 100 ppm | 10.86 | 300 °C | [ |
Fe2O3/ZnO nanocomposite | 10 ppm | 4.7 | 220 °C | [ |
Fe2O3/CdO | 100 ppm | 20 | 300 °C | [ |
Fe2O3/ZnO nanorods | 100 ppm | 7.34 | 200 °C | [ |
α-Fe2O3 | 200 ppm | 1.3 | 200 °C | [ |
Ag@Fe2O3 | 100 ppm | 6.3 | 250 °C | [ |
Pd@ZnO | 500 ppm | 5.12 | 260 °C | [ |
Table 1 Comparison of the performance of designed materials with prior reported literature.
Sensing Materials | Concentration (ppm) | Response (Ra/Rg)a | Temp. (°C) | References |
---|---|---|---|---|
α-Fe2O3@C | 10 ppm | 5.89 | 300 °C | This work |
100 ppm | 26.05 | |||
200 ppm | 40.23 | |||
500ppm | 57.40 | |||
Fe2O3/Co3O4 | 100 ppm | 10.86 | 300 °C | [ |
Fe2O3/ZnO nanocomposite | 10 ppm | 4.7 | 220 °C | [ |
Fe2O3/CdO | 100 ppm | 20 | 300 °C | [ |
Fe2O3/ZnO nanorods | 100 ppm | 7.34 | 200 °C | [ |
α-Fe2O3 | 200 ppm | 1.3 | 200 °C | [ |
Ag@Fe2O3 | 100 ppm | 6.3 | 250 °C | [ |
Pd@ZnO | 500 ppm | 5.12 | 260 °C | [ |
Fig. 5. (a) The selectivity of α-Fe2O3 and α-Fe2O3@C NCs to different testing gases at the concentrations value of 200 ppm. (b) The long-term stability of α-Fe2O3@C NCs-based sensor at 100 ppm of ethanol gas and at optimal operating temperature of 300 °C. (c) Schematic diagram of gas sensing mechanism of 3D α-Fe2O3@C NCs and (d) the horizontal plane surface of α-Fe2O3@C NCs. (e) Lattice strain between C and α-Fe2O3 for α-Fe2O3@C NCs.
[1] |
L. Wang, Z. Lou, J. Deng, R. Zhang, T. Zhang, ACS Appl. Mater. Interfaces, 7 (2015), pp. 13098-13104.
DOI URL |
[2] |
Y. Wang, L. Liu, C. Meng, Y. Zhou, Z. Gao, X. Li, X. Cao, L. Xu, W. Zhu, Sci. Rep., 6 (2016), p. 33092.
DOI URL |
[3] |
A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, Ceram. Int., 42 (2016), pp. 6136-6144.
DOI URL |
[4] |
T. Kavinkumar, S. Manivannan, J. Mater. Sci. Technol., 32 (2016), pp. 626-632.
DOI URL |
[5] |
H. Zhao, L. Liu, X. Lin, J. Dai, S. Liu, T. Fei, T. Zhang, ACS Sens., 5 (2019), pp. 346-352.
DOI URL |
[6] |
X. Lu, L. Zhang, H. Zhao, K. Yan, Y. Cao, L. Meng, J. Mater. Sci. Technol., 28 (2012), pp. 396-400.
DOI URL |
[7] | A. Ubale, M. Belkhedkar, J. Mater. Sci. Technol., 31 (2015), pp. 1-9. |
[8] |
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, J. Yuan, Adv. Mater., 32 (2020), 1907156.
DOI URL |
[9] |
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Adv. Funct. Mater., 30 (2020), 1908299.
DOI URL |
[10] |
Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, ACS Appl. Mater. Interfaces, 5 (2013), pp. 12310-12316.
DOI URL |
[11] |
N.M.A. Rashid, C.Y. Haw, W.S. Chiu, N.H. Khanis, P.S. Khiew, CrystEngComm, 18 (2016), pp. 4720-4732.
DOI URL |
[12] |
S. Cao, Y. Zhu, G. Cheng, Y. Huang, J. Phys. Chem. Solid, 71 (2010), pp. 1680-1683.
DOI URL |
[13] |
X. Hu, C. Yu, J. Gong, Q. Li, G. Li, Adv. Mater., 19 (2010), pp. 2324-2329.
DOI URL |
[14] |
H. Liang, X. Jiang, W. Chen, S. Wang, B. Xu, Z. Wang, Ceram. Int., 40 (2014), pp. 5653-5658.
DOI URL |
[15] |
S.H. Li, Z. Chu, F.F. Meng, T. Luo, X.Y. Hu, S.Z. Huang, Z. Jin, J. Alloys. Compd., 688 (2016), pp. 712-717.
DOI URL |
[16] |
S.L. Zhang, B.H. Cho, J.B. Yu, J.O. Lim, H.G. Byun, D.D. Lee, J.S. Huh, Sens. Lett., 9 (2011), pp. 845-849.
DOI URL |
[17] |
H. Aliah, R.N. Iman, A. Sawitri, D.G. Syarif, A. Setiawan, W. Darmalaksana, A. Malik, Mater. Res. Express, 6 (2019), 095908.
DOI URL |
[18] |
H. Yang, S. Ma, G. Yang, W. Jin, T. Wang, X. Jiang, W. Li, Mater. Lett., 169 (2016), pp. 73-76.
DOI URL |
[19] |
C. Su, Y. Zou, X. Xu, L. Liu, Z. Liu, L. Liu, Colloid Surf. A, 472 (2015), pp. 63-68.
DOI URL |
[20] |
D.K. Bandgar, S.T. Navale, G.D. Khuspe, S.A. Pawar, R.N. Mulik, V.B. Patil, Mater. Sci. Semicond. Process, 17 (2014), pp. 67-73.
DOI URL |
[21] |
S. Liang, J. Li, F. Wang, J. Qin, X. Lai, X. Jiang, Sens. Actuat. B: Chem., 238 (2017), pp. 923-927.
DOI URL |
[22] |
X.L. Hu, J.C. Yu, J.M. Gong, Q. Li, Adv. Mater., 19 (2007), pp. 2324-2329.
DOI URL |
[23] |
L. Wang, T. Fei, Z. Lou, T. Zhang, ACS Appl. Mater. Interfaces, 3 (2011), pp. 4689-4694.
DOI URL |
[24] | O.K. Tan, W. Cao, W. Zhu, J.W. Chai, J.S. Pan, Sens. Actuat.B: Chem., 93 (2003), pp. 396-401. |
[25] |
P. Sun, C. Wang, X. Zhou, P. Cheng, K. Shimanoe, G. Lu, N. Yamazoe, Sens. Actuat. B: Chem., 193 (2014), pp. 616-622.
DOI URL |
[26] |
J. Tan, J. Chen, K. Liu, X. Huang, Sens. Actuat. B: Chem., 230 (2016), pp. 46-53.
DOI URL |
[27] | A.V.M. Aroutiounian, V.M. Shahnazaryan, Adv.Nano Res., 3 (2015), pp. 1-11. |
[28] |
Z. Sun, H. Yuan, Z. Liu, B. Han, X. Zhang, Adv. Mater., 17 (2005), pp. 2993-2997.
DOI URL |
[29] |
M. Dai, L. Zhao, H. Gao, P. Sun, F. Liu, S. Zhang, K. Shimanoe, N. Yamazoe, G. Lu, ACS Appl. Mater. Interfaces, 9 (2017), pp. 8919-8928.
DOI URL |
[30] |
B. Chaitongrat, S. Chaisitsak, Mater. Sci. Forum, 947 (2019), pp. 47-51.
DOI URL |
[31] |
X. Jian, X. Xiao, L. Deng, W. Tian, X. Wang, N. Mahmood, S. Dou, ACS Appl. Mater. Interfaces, 10 (2018), pp. 9369-9378.
DOI URL |
[32] |
A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, L.I. Nasibulina, S. Jani, E.I. Kauppinen, Nano Res., 2 (2009), pp. 373-379.
DOI URL |
[33] |
B. Sun, J. Horvat, H.S. Kim, W.S. Kim, G. Wang, J. Phys. Chem. C, 114 (2010), pp. 18753-18761.
DOI URL |
[34] |
Y. Li, C. Zhu, T. Lu, Z. Guo, D. Zhang, J. Ma, S. Zhu, Carbon, 52 (2013), pp. 565-573.
DOI URL |
[35] |
Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces, 6 (2014), pp. 12997-13006.
DOI URL |
[36] |
B.I. Mezni, A. Mlayah, J. Phys. Chem. C, 117 (2013), pp. 16166-16174.
DOI URL |
[37] |
M. Pawlyta, J.N.L. Rouzaud, S. Duber, Carbon, 84 (2015), pp. 479-490.
DOI URL |
[38] |
Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces, 6 (2014), pp. 12997-13006.
DOI URL |
[39] |
Z. Su, L. Tan, R. Yang, Y. Zhang, J. Tao, N. Zhang, F. Wen, Chem. Phys. Lett., 695 (2018), pp. 153-157.
DOI URL |
[40] |
P. Kaspar, D. Sobola, R. Dallaev, S. Ramazanov, A. Nebojsa, S. Rezaee, L. Grmela, Appl. Surf. Sci., 493 (2019), pp. 673-678.
DOI PMID |
[41] |
A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Surf. Interface Anal., 36 (2004), pp. 1564-1574.
DOI URL |
[42] |
X. Wang, M. Zhang, E. Liu, F. He, C. Shi, C. He, J. Li, N. Zhao, Appl. Surf. Sci., 390 (2016), pp. 350-356.
DOI URL |
[43] |
A. Bak, W. Choi, H. Park, Appl. Catal. B: Environ., 110 (2011), pp. 207-215.
DOI URL |
[44] | B.I.Z. Chanturiya,, V.A.M. Ryazantseva, Miner. Eng., 143 (2019), pp. 350-356. |
[45] |
R. Meng, X. Qian, M. Fang, D. Yue, Y. Zhao, Res. Chem. Intermed., 44 (2018), pp. 1-15.
DOI URL |
[46] |
H. Kheel, G.J. Sun, J.K. Lee, S. Lee, C. Lee, Ceram. Int., 42 (2016), pp. 18597-18604.
DOI URL |
[47] |
Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song, L. Wang, J. Kong, J. Gu, Compos. Sci. Technol., 169 (2019), pp. 70-75.
DOI PMID |
[48] |
Z.T. Li, B. Lin, L.W. Jiang, E.C. Lin, J. Chen, S.J. Zhang, Y.W. Tang, F.A. He, D.H. Li, App. Surf. Sci., 427 (2018), pp. 56-64.
DOI URL |
[49] |
H. Wang, S. Nie, H. Li, R. Ali, J. Fu, H.J. Xiong, J. Li, Z. Wu, W.M. Lau, N. Mahmood, R. Jia, Y. Liu, X. Jian, ACS Sens., 4 (2019), pp. 2343-2350.
DOI URL |
[50] |
Z. Zheng, Y. Zao, Q. Zhang, Y. Cheng, D.L. Peng, Chem. Eng. J., 347 (2018), pp. 563-573.
DOI URL |
[51] |
B.B. Rao, Mater. Chem. Phys., 64 (2000), pp. 62-65.
DOI URL |
[52] |
L. Zhun, W. Zeng, Sens. Actuat. A: Phys., 267 (2017), pp. 242-261.
DOI URL |
[53] |
H. Tian, H. Fan, G. Dong, L. Ma, J. Ma, RSC Adv., 6 (2016), pp. 109091-109098.
DOI URL |
[54] | A. Mirzaei, S. Park, G.J. Sun, H. Kheel, C. Lee, S. Lee, J. Korean, Phys. Soc., 69 (2016), pp. 373-380. |
[55] | C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Sens. Actuat.B: Chem., 140 (2009), pp. 185-189. |
[56] |
J. Lim, K. Shin, H. Kim, C. Lee, Thin Solid Films, 475 (2005), pp. 256-261.
DOI URL |
[57] |
M.N.J. Arasteh, Struct. Chem., 30 (2018), pp. 97-105.
DOI URL |
[58] |
J.M. Polfus, K. Jayasayee, Carbon, 152 (2019), pp. 497-502.
DOI URL |
[59] |
T. Alizadeh, F. Zargr, Mater. Chem. Phys., 240 (2020), 122118.
DOI URL |
[60] |
S. Si, C. Li, X. Wang, Q. Peng, Y. Li, Sens. Actuat. B: Chem., 119 (2006), pp. 52-56.
DOI URL |
[61] |
D.K. Bandgar, S.T. Navale, G.D. Khuspe, S.A. Pawar, R.N. Mulik, V.B. Patil, Mater. Sci. Semicond. Process., 17 (2014), pp. 67-73.
DOI URL |
[62] |
A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S. Leonardi, G. Neri, Nanomaterials, 5 (2015), pp. 737-749.
DOI URL |
[63] | Z. Yang, P. Cao, S.T. Navale, Sens. Actuat.B: Chem., 298 (2019), 126850. |
[64] |
A.V. Raghu, K.K. Karuppanan, B. Pullithadathil, Adv. Mater. Interfaces, 6 (2019), 1801714.
DOI URL |
[65] |
S. Zhao, Y. Shen, X. Yan, P. Zhou, Y. Yin, R. Lu, C. Han, B. Cui, D. Wei, Sens. Actuat. B: Chem., 286 (2019), pp. 501-511.
DOI URL |
[66] |
A.J. Fletcher, Y. Yüzak, K.M. Thomas, Carbon, 44 (2006), pp. 989-1004.
DOI URL |
[1] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[2] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[3] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[4] | Kritesh Kumar Gupta, Tanmoy Mukhopadhyay, Aditya Roy, Sudip Dey. Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers [J]. J. Mater. Sci. Technol., 2020, 50(0): 44-58. |
[5] | Anna Basa, Sławomir Wojtulewski, Beata Kalska-Szostko, Maciej Perkowski, Elena Gonzalo, Olga Chernyayeva, Alois Kuhn, Flaviano García-Alvarado. Carbon coating of air-sensitive insulating transition metal fluorides: An example study on α-Li3FeF6 high-performance cathode for lithium ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 107-115. |
[6] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[7] | Angga Hermawan, Yusuke Asakura, Miki Inada, Shu Yin. A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature [J]. J. Mater. Sci. Technol., 2020, 51(0): 119-129. |
[8] | Dongha Im, Donghyun Kim, Dasol Jeong, Woon Ik Park, Myoungpyo Chun, Joon-Shik Park, Hyunjung Kim, Hyunsung Jung. Improved formaldehyde gas sensing properties of well-controlled Au nanoparticle-decorated In2O3 nanofibers integrated on low power MEMS platform [J]. J. Mater. Sci. Technol., 2020, 38(0): 56-63. |
[9] | Xiao You, Jinshan Yang, Mengmeng Wang, Hongda Wang, Le Gao, Shaoming Dong. Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity [J]. J. Mater. Sci. Technol., 2020, 58(0): 16-23. |
[10] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[11] | Zhimin Zou, Chunhai Jiang. Nitrogen-doped amorphous carbon coated mesocarbon microbeads as excellent high rate Li storage anode materials [J]. J. Mater. Sci. Technol., 2019, 35(4): 644-650. |
[12] | Ruiwu Li, Yanwen Zhou, Maolin Sun, Zhen Gong, Yuanyuan Guo, Xitao Yin, Fayu Wu, Wutong Ding. Gas sensing selectivity of oxygen-regulated SnO2 films with different microstructure and texture [J]. J. Mater. Sci. Technol., 2019, 35(10): 2232-2237. |
[13] | Liu Xuelian,Chen Yuxi,Liu Hongbo,Liu Zhi-Quan. SiO2@C hollow sphere anodes for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2017, 33(3): 239-245. |
[14] | Shao Wenting, Zhang Xinyu, Jiang Bailing, Liu Cancan, Li Hongtao. Spontaneous escape behavior of silver from graphite-like carbon coating and its inhibition mechanism [J]. J. Mater. Sci. Technol., 2017, 33(11): 1402-1408. |
[15] | T. Kavinkumar, S. Manivannan. Synthesis, Characterization and Gas Sensing Properties of Graphene Oxide-Multiwalled Carbon Nanotube Composite [J]. J. Mater. Sci. Technol., 2016, 32(7): 626-632. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||