J. Mater. Sci. Technol. ›› 2020, Vol. 58: 16-23.DOI: 10.1016/j.jmst.2020.03.055
• Research Article • Previous Articles Next Articles
Xiao Youa,c,d, Jinshan Yanga,c,*(), Mengmeng Wanga,c,d, Hongda Wanga,c, Le Gaoa,c, Shaoming Donga,b,c,*(
)
Received:
2020-02-02
Accepted:
2020-03-16
Published:
2020-12-01
Online:
2020-12-17
Contact:
Jinshan Yang,Shaoming Dong
Xiao You, Jinshan Yang, Mengmeng Wang, Hongda Wang, Le Gao, Shaoming Dong. Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity[J]. J. Mater. Sci. Technol., 2020, 58: 16-23.
Fig. 1. Schematic of the fabrication process of 3D scaffolds. The arrows represent that the graphene and PVP were homogenously dispersed to prepare graphene dispersion by ultrasonic. The paste-like graphene-based ink was obtained with the evaporation of ethanol accompany by continuous stirring. The ink was extruded from the nozzle to prepare a single layer. 3D scaffold was obtained by repeated U-shaped-layer printing with 90° horizontal rotations by the layer by layer integration.
Fig. 2. Log-log plots of (a) apparent viscosity as a function of shear rate and (b) shear storage and loss modulus as a function of shear stress for graphene-based inks with varying graphene contents.
Fig. 3. FESEM images of the prepared graphene-based scaffold: (a) diagram of the printed 3D scaffold; (b) exterior surface view and (c) the corresponding magnified image. The graphene sheets are immersed in PVP and distributed parallel to the surface; (d) fracture surface view and (e, f) the corresponding magnified images. The graphene sheets are distributed perpendicular to the cross-section and generated an interconnected conductive network.
Fig. 4. (a) TGA curves of the graphene-based scaffolds with varying graphene contents. (b) Exterior surface view of the annealed graphene scaffold and (c) corresponding magnified image. The graphene sheets generate an interconnected conductive network, which is distributed perpendicular to the radial direction. (d) Compressive strength and (e) compressive modulus of the printed graphene scaffolds with different ribbon diameters and graphene contents. (f) Typical stress-strain curves of the printed scaffolds with a ribbon diameter of 0.5 mm.
Fig. 5. (a) I-V characteristics of the 25 wt% graphene-based scaffold with a ribbon diameter of 0.5 mm in transvers and longitudinal directions. The applied voltage ranged from -1.0 to +1.0 V in 10 mV/s. The inset shows the different arrays of transverse and longitudinal to determine the electrical connection. Relative resistance change of the prepared 25 wt% scaffolds under compressing in (b) transverse and (c) longitudinal, in which the compressive stress is range from 0 to 15 MPa. (d) Relative resistance change of the sample as a function of compressive cycles for a compressive stress of 10 MPa.
Fig. 6. Relative resistance change (response) of the graphene scaffold assembled by different orthogonal layers exposed to relative humidity of 60 % from the vacuum chamber: (a) 25 wt% and (b) 66.7 wt%. Relative resistance change (response) of 25 wt% printed scaffolds and annealed scaffolds with three orthogonal layers under (c) 100 ppm H2O exposure and (d) 100 ppm NO2 exposure.
Fig. 7. (a) Relative resistance change (response) of 66.7 wt% scaffold with three orthogonal layers after thermal treatment under increasing NO2 exposure. (b) Schematic for mechanism of NO2 sensing of 3D graphene-based scaffold. The inset shows the periodic structure of graphene-based scaffold.
Materials | Target Gases | Sensitivity | LOD | Refs. |
---|---|---|---|---|
Graphene (CVD grown) | SO2 | 5.88 × 10-6 ppt-1 | 67.4 ppt | [ |
Porous Graphene | NO2 | 0.0432 ppm-1 | 15 ppb | [ |
Graphene/Pd | H2 | 1.532 × 10-2 ppm-1 | 20 ppm | [ |
Graphene/SnO2 | H2S | 2.1 ppm-1 | 6 ppm | [ |
Graphene/Cu2O | NO2 | 0.35 ppm-1 | 64 ppb | [ |
Graphene/PPy | NH3 | 0.075 ppm-1 | 5 ppm | [ |
Graphene scaffold | NO2 | 1.46 × 10-3 ppm-1 | 3 ppm | This work |
Table 1 Comparison of the gas-sensing performance of graphene-based gas sensors.
Materials | Target Gases | Sensitivity | LOD | Refs. |
---|---|---|---|---|
Graphene (CVD grown) | SO2 | 5.88 × 10-6 ppt-1 | 67.4 ppt | [ |
Porous Graphene | NO2 | 0.0432 ppm-1 | 15 ppb | [ |
Graphene/Pd | H2 | 1.532 × 10-2 ppm-1 | 20 ppm | [ |
Graphene/SnO2 | H2S | 2.1 ppm-1 | 6 ppm | [ |
Graphene/Cu2O | NO2 | 0.35 ppm-1 | 64 ppb | [ |
Graphene/PPy | NH3 | 0.075 ppm-1 | 5 ppm | [ |
Graphene scaffold | NO2 | 1.46 × 10-3 ppm-1 | 3 ppm | This work |
[1] | X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, Sensors Basel (Basel) 12 (2012) 9635-9665. |
[2] | F.L. Meng, Z. Guo, X.J. Huang, TrAC Trends Analyt. Chem. 68 (2015) 37-47. |
[3] | T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, L. Zhang, Nanomicr. Lett. 8 (2016) 95-119. |
[4] | S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D. Presicce, A.M. Taurino, J. Optoelectron. Adv. Mater. 5 (2003) 1335-1348. |
[5] | K. Fu, Y. Yao, J. Dai, L. Hu, Adv. Mater. 29 (2017), 1603486. |
[6] | M.K. Patra, K. Manzoor, M. Manoth, S.C. Negi, S.R. Vadera, N. Kumar, Defence Sci. J. 58 (2008) 636-649. |
[7] | K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146 (2008) 351-355. |
[8] |
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902-907.
URL PMID |
[9] | A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191. |
[10] |
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906-3924.
URL PMID |
[11] | E.W. Hill, A. Vijayaragahvan, K. Novoselov, IEEE Sensors J. 11 (2011) 3161-3170. |
[12] | A.C. de Leon, Q. Chen, N.B. Palaganas, J.O. Palaganas, J. Manapat, R.C. Advincula, React. Funct. Polymers 103 (2016) 141-155. |
[13] | Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, J.A. Rogers, Nat. Rev. Mater. 2 (2017) 17019. |
[14] | N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269. |
[15] |
C. Li, G. Shi, Nanoscale 4 (2012) 5549-5563.
URL PMID |
[16] | Y. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, L. Chen, W. Jiang, Carbon 48 (2010) 1743-1749. |
[17] | Q. Li, X. Guo, Y. Zhang, W. Zhang, C. Ge, L. Zhao, X. Wang, H. Zhang, J. Chen, Z. Wang, L. Sun, J. Mater. Sci. Technol. 33 (2017) 793-799. |
[18] | Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano 4 (2010) 4324-4330. |
[19] |
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Nat. Mater. 10 (2011) 424-428.
DOI URL PMID |
[20] | A. Sahu, W.I. Choi, G. Tae, Chem. Commun. 48 (2012) 5820-5822. |
[21] |
K. Chizari, M.A. Daoud, A.R. Ravindran, D. Therriault, Small 12 (2016) 6076-6082.
URL PMID |
[22] | B.H. Nguyen, V.H. Nguyen, Adv. Nat. Sci.: Nanosci.Nanotechnol. 7 (2016) 023002-023016. |
[23] | L.E. Murr, J. Mater. Sci. Technol. 32 (2016) 987-995. |
[24] |
H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mater. Chem. Phys. 94 (2005) 449-453.
DOI URL |
[25] | W. Liu, Q. Wang, C. Cao, X. Han, J. Zhang, X. Xie, B. Xia, J. Alloys. Compd. 621 (2015) 162-169. |
[26] | X. You, Q. Feng, J. Yang, K. Huang, J. Hu, S. Dong, J. Nanopat. Res. 21 (2019) 1-11. |
[27] |
K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Adv. Mater. 28 (2016) 2587-2594.
URL PMID |
[28] | X. You, J. Yang, K. Huang, M. Wang, X. Zhang, S. Dong, Carbon 155 (2019) 215-222. |
[29] | B.G. Compton, J.A. Lewis, Adv. Mater. 26 (2014) 5930-5935. |
[30] | K. Huang, J. Yang, S. Dong, Q. Feng, X. Zhang, Y. Ding, J. Hu, Carbon 130 (2018) 1-10. |
[31] |
Z. Qin, G.S. Jung, M.J. Kang, M.J. Buehler, Sci. Adv. 3 (2017), e1601536.
URL PMID |
[32] | S.A. Ntim, O. Sae-Khow, F.A. Witzmann, S. Mitra, J. Colloid Interf. Sci. 355 (2011) 383-388. |
[33] |
J.H. Kim, W.S. Chang, D. Kim, J.R. Yang, J.T. Han, G.W. Lee, J.T. Kim, S.K. Seol, Adv. Mater. 27 (2015) 157-161.
URL PMID |
[34] | J.E. Smay, G.M. Gratson, R.F. Shepherd, J. Cesarano, J.A. Lewis, Adv. Mater. 14 (2002) 1279-1283. |
[35] | X. You, J. Yang, M. Wang, J. Hu, Y. Ding, X. Zhang, S. Dong, Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion, 2D Mater. 7 (2019), 015025. |
[36] |
J.H. Kim, S. Lee, M. Wajahat, H. Jeong, W.S. Chang, H.J. Jeong, J.R. Yang, J.T. Kim, S.K. Seol, ACS Nano 10 (2016) 8879-8887.
DOI URL |
[37] | K. Huang, S. Dong, J. Yang, J. Yan, Y. Xue, X. You, J. Hu, L. Gao, X. Zhang, Y. Ding, Carbon 143 (2019) 63-72. |
[38] | J. Zhong, G.X. Zhou, P.G. He, Z.H. Yang, D.C. Jia, Carbon 117 (2017) 421-426. |
[39] | B. An, Y. Ma, W. Li, M. Su, F. Li, Y. Song, Chem. Commun. 52 (2016) 10948-10951. |
[40] |
Q. Zhang, F. Zhang, S.P. Medarametla, H. Li, C. Zhou, D. Lin, Small 12 (2016) 1702-1708.
URL PMID |
[41] | A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Action. 9 (2015) 4636-4648. |
[42] | B. Román-Manso, F.M. Figueiredo, B. Achiaga, R. Barea, D. Pérez-Coll, A. Morelos-Gómez, M. Terrones, M.I. Osendi, M. Belmonte, P. Miranzo, Carbon 100 (2016) 318-328. |
[43] | W. Yuan, G. Shi, J. Mater. Chem. A 1 (2013) 10078-10091. |
[44] | B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.L. Gu, W. Duan, J. Phys. Chem. C 112 (2008) 13442-13446. |
[45] | R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A.L. Spetz, R. Yakimova, Sensors Actuat. B: Chem. 155 (2011) 451-455. |
[46] |
C. Zhu, T. Liu, F. Qian, T.Y. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Nano Lett. 16 (2016) 3448-3456.
URL PMID |
[47] |
S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, J. Am. Chem. Soc. 134 (2012) 4905-4917.
DOI URL PMID |
[48] | G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee, J. Kim, Curr. Appl. Phys. 10 (2010) 1002-1004. |
[49] | G. Chen, T.M. Paronyan, A.R. Harutyunyan, Appl. Phys. Lett. 101 (2012), 053119. |
[50] |
T.H. Han, Y.K. Huang, A.T. Tan, V.P. Dravid, J. Huang, J. Am. Chem. Soc. 133 (2011) 15264-15267.
DOI URL PMID |
[51] |
H. Vedala, D.C. Sorescu, G.P. Kotchey, A. Star, Nano Lett. 11 (2011) 2342-2347.
DOI URL PMID |
[52] | Z. Zhang, R. Zou, G. Song, L. Yu, Z. Chen, J. Hu, J. Mater. Chem. 21 (43) (2011) 17360-17365. |
[53] | W.K. Jang, J. Yun, H.I. Kim, Y.S. Lee, Colloid Polymer Sci. 291 (2012) 1095-1103. |
[1] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[2] | Pan Wang, Xinwei Li, Shumin Luo, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 173-179. |
[3] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[4] | Liying Han, Cunshan Wang, Zhengwei Li. Mechanical, forming and biological properties of Ti-Fe-Zr-Y alloys prepared by 3D printing [J]. J. Mater. Sci. Technol., 2019, 35(7): 1323-1333. |
[5] | E. Murr Lawrence. Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication† [J]. J. Mater. Sci. Technol., 2016, 32(10): 987-995. |
[6] | Asieh Sadat Kazemi, Reza Afzalzadeh, Mohamadreza Abadyan. ZnO Nanoparticles as Ethanol Gas Sensors and the Effective Parameters on Their Performance [J]. J. Mater. Sci. Technol., 2013, 29(5): 393-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||