J. Mater. Sci. Technol. ›› 2020, Vol. 58: 10-15.DOI: 10.1016/j.jmst.2020.05.015
• Research Article • Previous Articles Next Articles
Chi Maa, Xue Baia, Qiang Rena, Hongquan Liua,*(), Yijie Gub,**(
), Hongzhi Cuia,*(
)
Received:
2020-03-20
Accepted:
2020-05-07
Published:
2020-12-01
Online:
2020-12-17
Contact:
Hongquan Liu,Yijie Gu,Hongzhi Cui
Chi Ma, Xue Bai, Qiang Ren, Hongquan Liu, Yijie Gu, Hongzhi Cui. From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe[J]. J. Mater. Sci. Technol., 2020, 58: 10-15.
Fig. 1. (a) Crystal structure of polycrystalline SnSe bulk sample. (b) XRD patterns of polycrystalline SnSe and Pb/SnSe bulk samples before and after annealing.
Fig. 2. Room temperature X-ray photoemission spectra of polycrystalline Pb/SnSe bulk sample (a) before annealing; (c) after annealing. valence state mapping patterns of polycrystalline Pb/SnSe bulk sample with measuring (b) before annealing; (d) after annealing.
Fig. 3. Temperature-dependent (a) electrical conductibility (σ), (b) Seebeck coefficient (S), (c) carrier concentration (nH), (d) carrier mobility (μH), (e) power factor (PF) of polycrystalline SnSe and Pb/SnSe bulk samples before and after annealing. (f) The histogram for PFmax of this work and others by melting method at 773 K as comparisons.
Fig. 4. Temperature-dependent (a) total thermal conductivity (κT), (c) ZT for polycrystalline SnSe and Pb/SnSe bulk samples before and after annealing. The histogram for (b) lattice thermal conductivity (κL) at 673 K, 723 K, 773 K of polycrystalline SnSe and Pb/SnSe bulk samples before and after annealing, respectively. (d) The histogram for ZTmax of this work and others by melting method at 773 K as comparisons.
[1] |
J. Hu, X.A. Fan, C.P. Jiang, B. Feng, Q.S. Xiang, G.Q. Li, Z. He, Y.W. Li, J. Mater. Sci. Technol. 34 (2018) 2458-2463.
DOI URL |
[2] |
B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, Science 320 (2008) 634-638.
DOI URL PMID |
[3] |
Y.Z. Pei, X.Y. Shi, A. Lalonde, H. Wang, L.D. Chen, G.J. Snyder, Nature 473 (2011) 66-69.
DOI URL PMID |
[4] |
J.P. Heremans, C.M. Thrush, D.T. Morelli, Phys. Rev. B 70 (2004), 115334.
DOI URL |
[5] |
K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489 (2012) 414-418.
DOI URL |
[6] |
W. Wei, C. Cheng, Y. Teng, J.Z. Liu, H.C. Tang, J. Zhang, Y.S. Li, F. Xu, Z.D. Zhang, J.F. Li, G.D. Tang, J. Am. Chem. Soc. 140 (2018) 499-505.
DOI URL PMID |
[7] |
Y. Kim, Y. Jin, G. Yoon, I. Chung, H. Yoon, C.Y. Yoo, H.P. Sang, J. Mater. Sci. Technol. 35 (2019) 711-718.
DOI URL |
[8] |
Z.Y. Chu, H.Q. Liu, C.H. Yuan, Y.Q. Wang, W.J. Wang, H.Z. Cui, Y.J. Gu, Mater. Chem. Phys. 199 (2017) 464-470.
DOI URL |
[9] |
B.C. Qin, D.Y. Wang, W.K. He, Y. Zhang, H.J. Wu, S.J. Pennycook, L.D. Zhao, J. Am. Chem. Soc. 141 (2019) 1141-1149.
DOI URL PMID |
[10] |
L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377.
DOI URL |
[11] |
C.L. Chen, H. Wang, Y.Y. Chen, T. Day, G.J. Snyder, J. Mater. Chem. A 2 (2014) 11171-11176.
DOI URL |
[12] |
T.R. Wei, G.J. Tan, X.M. Zhang, C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, M.G. Kanatzidis, J. Am. Chem. Soc. 138 (2016) 8875-8882.
DOI URL PMID |
[13] |
J.H. Kim, S. Oh, Y.M. Kim, H.S. So, H. Lee, J.S. Rhyee, S.D. Park, S.J. Kim, J. Alloys. Compd. 682 (2016) 785-790.
DOI URL |
[14] |
N.K. Singh, S. Bathula, B. Gahtoria, K. Tyagiab, D. Haranath, A. Dhara, J. Alloys. Compd. 668 (2016) 152-158.
DOI URL |
[15] |
Q. Zhang, E.K. Chere, J.Y. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z.F. Ren, Adv. Energy Mater. 5 (2015), 1500360.
DOI URL |
[16] | H.Q. Liu, Z.Y. Chu, H.Z. Cui, T. Yuan, Y.J. Gu, C.H. Yuan, H. Xue, Y.Q. Wang, Rare Metal Mater. Eng. 47 (2018) 1013-1019. |
[17] |
L.D. Zhao, S.Q. Hao, S.H. Lo, C.I. Wu, X.Y. Zhou, Y. Lee, H. Li, K. Biswas, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 135 (2013) 7364-7370.
DOI URL PMID |
[18] |
E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z.F. Ren, J. Mater. Chem. A Mater. Energy Sustain. 4 (2016) 1848-1854.
DOI URL |
[19] |
S.R. Popuri, M. Pollet, R. Decourt, F.D. Morrison, N.S. Bennett, J.W.G. Bos, J. Mater. Chem. C Mater. Opt. Electron. Devices 4 (2016) 1685-1691.
DOI URL |
[20] |
Y.W. Li, F. Li, J.F. Dong, Z.H. Ge, F.Y. Kang, J.Q. He, H.D. Du, B. Li, J.F. Li, J. Mater. Chem. C 4 (2016) 2047-2055.
DOI URL |
[21] |
Z.H. Ge, K.Y. Wei, H. Lewis, J. Martin, G.S. Nolas, J. Solid State Chem. 225 (2015) 354-358.
DOI URL |
[22] |
Y.W. Zhang, X.P. Jia, H.R. Sun, B. Sun, B.W. Liu, H.G. Ma, J. Alloys. Compd. 667 (2016) 123-129.
DOI URL |
[23] |
X. Zhang, H.Q. Liu, Q.M. Lu, J.X. Zhang, F.P. Zhang, Appl. Phys. Lett. 103 (2013), 063901.
DOI URL |
[24] |
J. Zhou, X.B. Li, G. Chen, R.G. Yang, Phys. Rev. B 82 (2010), 115308.
DOI URL |
[25] |
H.Q. Liu, X.B. Zhao, T.J. Zhu, Y.J. Gu, J. Rare Earths 30 (2012) 456-459.
DOI URL |
[26] |
G.J. Tan, F.Y. Shi, H. Sun, L.D. Zhao, C. Uher, V.P. Dravid, M.G. Kanatzidis, J. Mater. Chem. A Mater. Energy Sustain. 2 (2014) 20849.
DOI URL |
[27] |
L.D. Zhao, X. Zhang, H.J. Wu, G.J. Tan, Y.Z. Pei, Y. Xiao, C. Chang, D. Wu, H. Chi, L. Zheng, S.K. Gong, C. Uher, J.Q. He, M.G. Kanatzidis, J. Am. Chem. Soc. 138 (2016) 2366-2373.
DOI URL PMID |
[28] |
L.J. Zhang, J.L. Wang, Z.X. Cheng, Q. Sun, Z. Li, S.X. Dou, J. Mater. Chem. A Mater. Energy Sustain. 4 (2016) 7936-7942.
DOI URL |
[29] |
A. Banik, S. Roychowdhury, K. Biswas, Chem. Commun. 54 (2018) 6573-6590.
DOI URL |
[30] |
Y.Z. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, G.J. Snyder, Adv. Funct. Mater. 21 (2011) 241-249.
DOI URL |
[31] | H. Ju, D. Park, J. Kim, J. Alloys. Compd. 732 (2018) 436-442. |
[32] | D. Li, J.C. Li, X.Y. Qin, J. Zhang, H.X. Xin, C.J. Song, L. Wang, Energy 116 (2016) 861-866. |
[33] | Y. Tang, D.C. Li, Z. Chen, S.P. Deng, L.Q. Sun, W.T. Liu, L.X. Shen, S.K. Deng, Chin. Phys. B 27 (2018), 118105. |
[34] | Y. Lu, F.W. Zheng, Y. Yang, P. Zhang, D.B. Zhang, Phys. Rev. B 100 (2019), 054304. |
[35] | G. Duvjir, T. Min, T.T. Ly, T. Kim, A.T. Duong, S. Cho, S.H. Rhim, J. Lee, J. Kim, Appl. Phys. Lett. 110 (2017), 262106. |
[36] | C. Ma, H.Q. Liu, R.X. Chen, Q. Su, H.Z. Cui, Y.J. Gu, J. Mater. Sci. -Mater. Electron. 30 (2019) 6403-6410. |
[37] |
G.D. Tang, J. Liu, J. Zhang, D. Li, K.H. Rara, R. Xu, W.Q. Lu, J.Z. Liu, Y.S. Zhang, Z.Z. Peng, ACS Appl. Mater. Interfaces 10 (2018) 30558-30565.
DOI URL PMID |
[38] | J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prairie Minnesota, 1992. |
[39] |
Y.K. Lee, K. Ahn, J. Cha, C.J. Zhou, H.S. Kim, G. Choi, S.I. Chae, J.H. Park, S.P. Cho, S.H. Park, Y.E. Sung, W.B. Lee, T. Hyeon, I. Chung, J. Am. Chem. Soc. 139 (2017) 10887-10896.
DOI URL PMID |
[40] | C. Ma, X.Y. Wang, H.Q. Liu, Q. Su, Q. Zhang, Y.J. Gu, H.Z. Cui, ACS Appl. Energy Mater. 2 (2019) 2604-2610. |
[41] |
G.D. Tang, W. Wei, J. Zhang, Y.S. Li, X. Wang, G.Z. Xu, C. Chang, Z.H. Wang, Y.W. Du, L.D. Zhao, J. Am. Chem. Soc. 138 (2016) 13647-13654.
URL PMID |
[42] | Y.D. Cheng, J.Y. Yang, Q.H. Jiang, L.W. Fu, Y. Xiao, Y.B. Luo, D. Zhang, M.Y. Zhang, J. Am. Ceram. Soc. 98 (2015) 3975-3980. |
[43] | Q.Q. Li, L.L. Zhang, J.Z. Yin, Z.H. Sheng, X.Z. Chu, F. Wang, F.X. Zhu, J. Alloys. Compd. 745 (2018) 513-518. |
[44] | M. Cutler, N.F. Mott, Phys. Rev. 181 (1969) 1336. |
[45] | T.J. Zhu, Y.T. Liu, C.G. Fu, J.P. Heremans, J.G. Snyder, X.B. Zhao, Adv. Mater. 29 (2017), 1605884. |
[46] | Q. Zhao, B.C. Qin, D.Y. Wang, Y.T. Qiu, L.D. Zhao, ACS Appl. Energy Mater. 3 (2020) 2049-2054. |
[47] | Z.G. Chen, X.L. Shi, L.D. Zhao, J. Zou, Prog. Mater. Sci. 97 (2018) 283-346. |
[48] | E.S. Toberer, L.L. Baranowski, C. Dames, Ann. Rev. Mater. Res. 42 (2012) 179-209. |
[49] | C.C. Lin, L. Rathnam, J.H. Yun, H.S. Lee, J.S. Rhyee, Chem. Mater. 29 (2017) 5344-5352. |
[50] | F. Chu, Q.H. Zhang, Z.X. Zhou, D.K. Hou, L.J. Wang, W. Jiang, J. Alloys. Compd. 741 (2018) 756-764. |
[51] | X.C. He, H.L. Shen, W. Wang, Z.Z. Wang, B.S. Zhang, X.Q. Li, J. Alloys. Compd. 556 (2013) 86-93. |
[52] | S. Perumal, M. Samanta, T. Ghosh, U.S. Shenoy, A.K. Bohra, S. Bhattacharya, A. Singh, U.V. Waghmare, K. Biswas, Joule 3 (2019) 1-16. |
[1] | Daquan Liu, Yanxia Wang, Xue Jiang, Huijun Kang, Xiong Yang, Xiaoying Zhang, Tongmin Wang. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures [J]. J. Mater. Sci. Technol., 2020, 52(0): 172-179. |
[2] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
[3] | Kim Yeongseon, Jin Younghwan, Yoon Giwan, Chung In, Yoon Hana, Yoo Chung-Yul, Hyun Park Sang. Electrical characteristics and detailed interfacial structures of Ag/Ni metallization on polycrystalline thermoelectric SnSe [J]. J. Mater. Sci. Technol., 2019, 35(5): 711-718. |
[4] | Jie Hu, Xi’An Fan, Chengpeng Jiang, Bo Feng, Qiusheng Xiang, Guangqiang Li, Zhu He, Yawei Li. Introduction of porous structure: A feasible and promising method for improving thermoelectric performance of Bi2Te3 based bulks [J]. J. Mater. Sci. Technol., 2018, 34(12): 2458-2463. |
[5] | Cui Yu,Yun Zhang,Tiejun Zhu,Guangyu Jiang,Ji Xu,Bo Zhao,Xinabing Zhao. Preparation and Thermoelectric Properties of Zr1-xTixNiSn0:975Sb0:025 Half-Heusler Alloys [J]. J Mater Sci Technol, 2009, 25(06): 738-741. |
[6] | Ying LI, Guiying XU, Maofa JIANG. Thermoelectric Characterization of (Na1-yMy)1.6Co2O4 (M=K, Ca, Sr) [J]. J Mater Sci Technol, 2006, 22(04): 526-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||