J. Mater. Sci. Technol. ›› 2020, Vol. 52: 172-179.DOI: 10.1016/j.jmst.2020.02.065
• Research Article • Previous Articles Next Articles
Daquan Liua, Yanxia Wangb, Xue Jiangb, Huijun Kanga,*(), Xiong Yanga, Xiaoying Zhanga, Tongmin Wanga,*(
)
Received:
2020-02-02
Revised:
2020-02-19
Accepted:
2020-02-20
Published:
2020-09-15
Online:
2020-09-18
Contact:
Huijun Kang,Tongmin Wang
Daquan Liu, Yanxia Wang, Xue Jiang, Huijun Kang, Xiong Yang, Xiaoying Zhang, Tongmin Wang. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures[J]. J. Mater. Sci. Technol., 2020, 52: 172-179.
Fig. 1. (a) XRD patterns and (b) unit cell volume and lattice parameters for the Sr0.9La0.05Dy0.05Ti1-xNbxO3 powders with different Nb contents. Vertical lines indicate the reference pattern of SrTiO3 (PDF #35-0734).
Fig. 3. (a) XRD patterns of the Sr0.9La0.05Dy0.05Ti1-xNbxO3 bulk samples after sintering at scanning angle of 20° ≤ 2θ ≤ 80° and (b) magnified (110) diffraction peaks.
Element | LaDy-Nb0 | LaDy-Nb05<break/>(matrix) | LaDy-Nb10<break/>(matrix) | LaDy-Nb15<break/>(matrix) | LaDy-Nb20<break/>(matrix) | ||
---|---|---|---|---|---|---|---|
PointA | AreaB | ||||||
A site | Sr | 0.76 | 47.34 | 46.09 | 44.23 | 45.33 | 45.49 |
La | 0.00 | 2.59 | 2.10 | 2.30 | 2.79 | 2.33 | |
Dy | 0.08 | 2.65 | 2.49 | 2.29 | 2.82 | 2.94 | |
B site | Ti | 99.16 | 47.42 | 46.37 | 45.96 | 41.77 | 39.74 |
Nb | 0 | 0.01 | 2.94 | 5.24 | 7.3 | 9.50 |
Table 1 Actual compositions of La-, Dy-, and Nb- codoped SrTiO3 samples with different Nb contents (at.%).
Element | LaDy-Nb0 | LaDy-Nb05<break/>(matrix) | LaDy-Nb10<break/>(matrix) | LaDy-Nb15<break/>(matrix) | LaDy-Nb20<break/>(matrix) | ||
---|---|---|---|---|---|---|---|
PointA | AreaB | ||||||
A site | Sr | 0.76 | 47.34 | 46.09 | 44.23 | 45.33 | 45.49 |
La | 0.00 | 2.59 | 2.10 | 2.30 | 2.79 | 2.33 | |
Dy | 0.08 | 2.65 | 2.49 | 2.29 | 2.82 | 2.94 | |
B site | Ti | 99.16 | 47.42 | 46.37 | 45.96 | 41.77 | 39.74 |
Nb | 0 | 0.01 | 2.94 | 5.24 | 7.3 | 9.50 |
Fig. 5. Typical cross-sectional microstructures of the LaDy-Nb20 sintered samples: (a) optical microscope image after polishing; (b, c) SEM images of fresh fractures fordifferent area; (d) a model of the sintering process.
Fig. 8. Thermoelectric properties of the Sr0.9La0.05Dy0.05Ti1-xNbxO3 bulk samples as a function of temperature: (a) electrical conductivity, wherein the inset image is the 1 st derivative i of “lnσ-lnT”; (b) Seebeck coefficient; (c) power factor; (d) total thermal conductivity, wherein the inset image is the electron thermal conductivity; (e) lattice thermal conductivity; (f) figure-of-merit zT.
[1] | L.E. Bell, Science, 321(2008), pp. 1457-1461. |
[2] |
G. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev., 116(2016), pp. 12123-12149.
DOI URL |
[3] |
Y. Kim, Y. Jin, G. Yoon, I. Chung, H. Yoon, C.Y. Yoo, S.H. Park, J. Mater. Sci. Technol., 35(2019), pp. 711-718.
DOI URL |
[4] | G.J. Snyder, E.S. Toberer, Nat. Mater., 7(2008), pp. 105-114. |
[5] | K. Park, J.S. Son, S.I. Woo, K. Shin, M.W. Oh, S.D. Park, T. Hyeon, J. Mater. Chem. A, 2(2014), pp. 4217-4224. |
[6] | D. Liu, Y. Zhang, H. Kang, J. Li, Z. Chen, T. Wang, J. Eur. Ceram. Soc., 38(2018), pp. 807-811. |
[7] |
K. Shirai, K. Yamanaka, J. Appl. Phys., 113 (2013), Article 053705.
DOI URL PMID |
[8] | B. Zhan, J. Lan, Y. Liu, Y. Lin, Y. Shen, C. Nan, J. Mater. Sci. Technol., 30(2014), pp. 821-825. |
[9] | J.W. Fergus, J. Eur. Ceram. Soc., 32(2012), pp. 525-540. |
[10] | H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd., 350(2003), pp. 292-295. |
[11] |
B. Amin, N. Singh, T.M. Tritt, H.N. Alshareef, U. Schwingenschlogl, Appl. Phys. Lett., 103 (2013), Article 031907.
DOI URL PMID |
[12] | J. Liu, C.L. Wang, H. Peng, W.B. Su, H.C. Wang, J.C. Li, J.L. Zhang, L.M. Mei, J. Electron. Mater., 41(2012), pp. 3073-3076. |
[13] | B.Y. Zhang, J. Wang, T. Zou, S. Zhang, X.B. Yaer, N. Ding, C.Y. Liu, L. Miao, Y. Li, Y. Wu, J. Mater. Chem. C, 3(2015), pp. 11406-11411. |
[14] | H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, L.M. Mei, J. Am. Ceram. Soc., 94(2011), pp. 838-842. |
[15] | J. Wang, B. Zhang, H. Kang, Y. Li, X. Yaer, J. Li, Q. Tan, S. Zhang, G. Fan, C. Liu, L. Miao, D. Nan, T. Wang, L. Zhao, Nano Energy, 35(2017), pp. 387-395. |
[16] | K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, R. Funahashi, Ann. Rev. Mater. Res., 40(2010), pp. 363-394. |
[17] |
Y. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, H. Yu, Y. Chen, B. Ge, Adv. Electron. Mater., 2 (2016), Article 1600019.
DOI URL PMID |
[18] |
J. Liu, C.L. Wang, W.B. Su, H.C. Wang, P. Zheng, J.C. Li, J.L. Zhang, L.M. Mei, Appl. Phys. Lett., 95 (2009), Article 162110.
DOI URL PMID |
[19] | A.V. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patricio, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J.R. Frade, J. Mater. Chem. A, 5(2017), pp. 3909-3922. |
[20] |
Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G.J. Snyder, Y. Pei, Adv. Mater., 29 (2017), Article 1606768.
DOI URL PMID |
[21] | J. Hu, X.A. Fan, C. Jiang, B. Feng, Q. Xiang, G. Li, Z. He, Y. Li, J. Mater, Sci. Technol., 34(2018), pp. 2458-2463. |
[22] | Y. Ma, Q. Hao, B. Poudel, Y.C. Lan, B. Yu, D.Z. Wang, G. Chen, Z.F. Ren, Nano Lett., 8(2008), pp. 2580-2584. |
[23] | B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, Science, 320(2008), pp. 634-638. |
[24] | H. Zhao, J. Sui, Z. Tang, Y. Lan, Q. Jie, D. Kraemer, K. McEnaney, A. Guloy, G. Chen, Z. Ren, Nano Energy, 7(2014), pp. 97-103. |
[25] | G. Kresse, J. Furthmüller, Phys. Rev. B, 54(1996), pp. 11169-11186. |
[26] | G. Kresse, J. Furthmüller, Comput. Mater. Sci., 6(1996), pp. 15-50. |
[27] | P.E. Blöchl, Phys. Rev. B, 50(1994), pp. 17953-17979. |
[28] | G. Kresse, D. Joubert, Phys. Rev. B, 59(1999), pp. 1758-1775. |
[29] | D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci., 46(2011), pp. 855-874. |
[30] | Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G.J. Snyder, Y. Pei, Nat. Commun., 8(2017), p. 13828. |
[31] | H. Du, C. Jia, L. Houben, V. Metlenko, R.A.D. Souza, R. Waser, J. Mayer, Acta Mater., 89(2015), pp. 344-351. |
[32] | D. Srivastava, C. Norman, F. Azough, M.C. Schafer, E. Guilmeau, D. Kepaptsoglou, Q.M. Ramasse, G. Nicotra, R. Freer, Phys. Chem. Chem. Phys., 18(2016), pp. 26475-26486. |
[33] | D. Liu, Y. Zhang, H. Kang, J. Li, X. Yang, T. Wang, Chin. Phys. B, 27 (2018), Article 047205. |
[34] | J. Han, Q. Sun, Y. Song, J. Alloys Compd., 705(2017), pp. 22-27. |
[35] | Y. Hu, O.K. Tan, J.S. Pan, X. Yao, J. Phys. Chem. B, 108(2004), pp. 11214-11218. |
[36] | A. Kikuchi, N. Okinaka, T. Akiyama, Scr. Mater., 63(2010), pp. 407-410. |
[37] | D. Ekren, F. Azough, A. Gholinia, S.J. Day, D. Hernandez-Maldonado, D.M. Kepaptsoglou, Q.M. Ramasse, R. Freer, J. Mater. Chem. A, 6(2018), pp. 24928-24939. |
[38] | W. Wunderlich, H. Ohta, K. Koumoto, Phys. B, 404(2009), pp. 2202-2212. |
[39] | M. Ahrens, R. Merkle, B. Rahmati, J. Maier, Phys. B-Condens. Matter, 393(2007), pp. 239-248. |
[40] | K. Zhao, A.B. Blichfeld, E. Eikeland, P. Qiu, D. Ren, B.B. Iversen, X. Shi, L. Chen, J. Mater. Chem. A, 5(2017), pp. 18148-18156 |
[1] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
[2] | Jing Fan, Wei Rao, Junwei Qiao, P.K. Liaw, Daniel Şopu, Daniel Kiener, Jürgen Eckert, Guozheng Kang, Yucheng Wu. Achieving work hardening by forming boundaries on the nanoscale in a Ti-based metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2020, 50(0): 192-203. |
[3] | Chi Ma, Xue Bai, Qiang Ren, Hongquan Liu, Yijie Gu, Hongzhi Cui. From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe [J]. J. Mater. Sci. Technol., 2020, 58(0): 10-15. |
[4] | Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels [J]. J. Mater. Sci. Technol., 2019, 35(4): 623-630. |
[5] | Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2019, 35(11): 2600-2607. |
[6] | Yanli Lu, Fang Liu, Xiang Li, Feng Gao, Zheng Chen. First-Principles Study on the Stability and Electronic Properties of Bi-Doped Sr3Ti2O7 [J]. J. Mater. Sci. Technol., 2018, 34(5): 891-898. |
[7] | Jie Hu, Xi’An Fan, Chengpeng Jiang, Bo Feng, Qiusheng Xiang, Guangqiang Li, Zhu He, Yawei Li. Introduction of porous structure: A feasible and promising method for improving thermoelectric performance of Bi2Te3 based bulks [J]. J. Mater. Sci. Technol., 2018, 34(12): 2458-2463. |
[8] | Zhao Ke, Cao Baobao, Liu Jinling, Wang Yiguang, An Linan. In-situ synthesis of Al76.8Fe24 complex metallic alloy phase in Al-based hybrid composite [J]. J. Mater. Sci. Technol., 2017, 33(10): 1177-1181. |
[9] | Tan Zhen,Wang Lu,Xue Yunfei,Cheng Xingwang,Zhang Long. Structural Modification of Al65Cu16.5Ti18.5 Amorphous Powder through Annealing and Post Milling: Improving Thermal Stability [J]. J. Mater. Sci. Technol., 2016, 32(12): 1326-1331. |
[10] | Hefei Huang, Chao Yang, Massey de los Reyes, Yongfeng Zhou, Long Yan, Xingtai Zhou. Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature [J]. J. Mater. Sci. Technol., 2015, 31(9): 923-929. |
[11] | Ram S. Maurya, Tapas Laha. Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al-TM-RE Based Amorphous Alloys [J]. J. Mater. Sci. Technol., 2015, 31(11): 1118-1124. |
[12] | Bin Li, Guojun Zhang, Feng Jiang, Shuai Ren, Gang Liu, Jun Sun. Characterization of Mo-Si-B Nanocomposite Powders Produced Using Mechanical Alloying and Powder Heat Treatment [J]. J. Mater. Sci. Technol., 2015, 31(10): 995-1000. |
[13] | Baogang Yang, Songlin Li, Hang Wang, Jintao Xiang, Qiumin Yang. Effect of MWCNTs Additive on Desorption Properties of Zn(BH4)2 Composite Prepared by Mechanical Alloying [J]. J. Mater. Sci. Technol., 2013, 29(8): 715-719. |
[14] | Kahtan S. Mohammed, Azmi Rahmat, Khairel R. Ahmad. Sintering Behavior and Microstructure Evolution of Mechanically Alloyed W-Bronze Composite Powders by Two-step Ball Milling Process [J]. J. Mater. Sci. Technol., 2013, 29(1): 59-69. |
[15] | Ala'eddin A. Saif, P. Poopalan. AC Conductivity and Dielectric Relaxation Behavior of Sol-gel BaxSr1-xTiO3 Thin Films [J]. J Mater Sci Technol, 2011, 27(9): 802-808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||