Please wait a minute...
J. Mater. Sci. Technol.  2017, Vol. 33 Issue (10): 1177-1181    DOI: 10.1016/j.jmst.2017.05.009
Orginal Article Current Issue | Archive | Adv Search |
In-situ synthesis of Al76.8Fe24 complex metallic alloy phase in Al-based hybrid composite
Zhao Kea, Cao Baobaob, Liu Jinlingc(), Wang Yiguanga, An Linand
aScience and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
bSchool of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
cState Key Laboratory of Traction Power, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
dDepartment of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816, USA
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The complex metallic alloy (CMA), Al76.8Fe24, was in-situ synthesized in the Al-based hybrid composite by powder metallurgy technique. The structural analysis by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy indicated that the Al76.8Fe24 CMA phase was formed by diffusion of Fe atoms into the Al matrix during the sintering stage. The formation of the CMA phase was mainly determined by the sintering temperature which was just above the eutectic temperature of Al-Fe. Moreover, the fully dense Al-based hybrid composite was obtained and exhibited ultrahigh strength ~1100 MPa, indicating that this method is expected to be effective in producing CMA particle reinforced Al-based hybrid composite.

Key words:  Complex metallic alloy (CMA)      Mechanical alloying      Aluminum      Hybrid composites     
Received:  06 January 2017     
About author: 

1 These two authors contributed equally to this paper.

Cite this article: 

Zhao Ke, Cao Baobao, Liu Jinling, Wang Yiguang, An Linan. In-situ synthesis of Al76.8Fe24 complex metallic alloy phase in Al-based hybrid composite. J. Mater. Sci. Technol., 2017, 33(10): 1177-1181.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.05.009     OR     https://www.jmst.org/EN/Y2017/V33/I10/1177

C Si Mn P S Ni Cr Mo Fe
≤0.08 ≤1 ≤2 ≤0.045 ≤0.03 10.0-14.0 16.0-18.0 2.0-3.0 Bal.
Table 1  Chemical composition of the vails and balls (wt%).
Fig. 1.  (a) SEM image and (b-f) corresponding EDX composition maps of the milled Al-based composite powder.
Fig. 2.  EDX pattern of the milled Al-based composite powder.
Fig. 3.  XRD pattern of the milled Al-based composite powder.
Fig. 4.  XRD pattern of the sintered bulk Al-based hybrid composite.
Fig. 5.  (a) TEM bright fieldimage and (b) high resolution micrograph of the Al76.8Fe24 phase in Al-based hybrid composite. The SAED pattern in the inset of (a) corresponds to the dashed circle region in (a). The high resolution micrograph (b) was obtained from the black frame area in (a).
Fig. 6.  (a) SEM image and (b-f) EDX composition maps of the sintered bulk Al-based hybrid composite.
Fig. 7.  Statistical Al76.8Fe24 CMA particle size distribution in the Al-based hybrid composite.
Fig. 8.  (a) True stress-true strain curves at different strain rates and (b) typical fracture surface of the Al-based hybrid composite.
[1] Jean-Marie Dubois, Esther Belin-Ferré. Complex Metallic Alloys: Fund amentals and Applications. WILEY-VCH Velag GmbH & Co. KGaA. 2011.pp.1.
[2] S. Kenzari, D. Bonina, J.M. Dubois, V. Fournée, Sci. Technol. Adv. Mater. 15(2014) 024802.
[3] H. Zhang, K.H. Kuo, Phys. Rev. B 42 (1990) 8907-8914.
[4] A.I. Goldman, R.F. Kelton, Rev. Mod. Phys. 65(1993) 213-230.
[5] E. Huttunen-Saarivirta, J. AlloysCompd..363(2004) 150-174.
[6] H.M. Kimura, K. Sasamori, A. Inoue, Mater. Sci. Eng.A294-296(2000)168-172.
[7] F. Ali, S. Scudino, S.M. Gorantla, V.C. Srivastava, H.R. Shahid, V. Uhlenwinkel, M. Stoica, G. Vaughan, N.K. Mukhopadhyay, J. Eckert, Acta Mater. 61(2013)3819-3830.
[8] V.C. Srivastava, E. Huttunen-Saarivirta, C. Cui, V. Uhlenwinkel, A. Schulz, N.K. Mukhopadhyay, J. AlloysCompd..597(2014) 258-268.
[9] F. Ali, S. Scudino, M.S. Anwar, R.N. Shahid, V.C. Srivastava, V. Uhlenwinkel, M.Stoica, G. Vaughan, J. Eckert, J. AlloysCompd..607(2014) 274-279.
[10] L. Lityn′ ska-Dobrzyn′ ska, J.Dutkiewicz, K. Stan-G?owin′ ska, W. Wajda, L.Dembinski, C. Langlade, C. Coddet, J. Alloys Compd. 643(2015) S114-S118.
[11] A. Inoue, H. Kimura, Mater. Sci. Eng. A 286 (2000) 1-10.
[12] F. Schurack, J. Eckert, L. Schultz, Acta Mater. 49(2001) 1351-1361.
[13] F. Schurack, J. Eckert, L. Schultz, Mater. Sci. Eng.A294-296(2000) 164-167.
[14] F. Ali, S. Scudino, G. Liu, V.C. Srivastava, N.K. Mukhopadhyay, M.S. Khoshkhoo,K.G. Prashanth, V. Uhlenwinkel, M. Calin, J. Eckert, J. AlloysCompd..536S(2012) S130-S133.
[15] Y. Xue, R.J. Shen, S. Ni, M. Song, D.H. Xiao, J. AlloysCompd..618(2015)537-544.
[16] S.S. Nayak, M. Wollgarten, J. Banhart, S.K. Pabi, B.S. Murty, Mater. Sci. Eng. A 527 (2010) 2370-2378.
[17] M. Galano, A. Marsh, F. Audebert, W. Xu, M. Ramundo, J. AlloysCompd..643(2015) S99-S106.
[18] G. Laplanche, A. Joulain, J. Bonneville, R. Schaller, T.E. Kabir, J. Alloys Compd.493(2010) 453-460.
[19] S. kenzari, P.Weisbecker, G. Geandier, V. Fournée, J.M. Dubois, Philos. Mag. 86(2006) 287-292.
[20] D.H. Kim, B. Cantor, Philos. Mag. A 69 (1994) 45-55.
[21] T.A. Sviridova, A.P. Shevchukov, E.V. Shelekhov, D.L. Diakonov, V.V.Tcherdyntsev, S.D. Kaloshkin, J. AlloysCompd..509S(2011) S299-S303.
[22] V.V. Tcherdyntsev, S.D. Kaloshkin, A.I. Salimon, I.A. Tomilin, A.M. Korsunsky, J.Non-Cryst.Solids312-314(2002) 522-526.
[23] X.L. Li, A. Scherf, M. Heilmaier, F. Stein, J. PhaseEquilib.Diffus..37(2016)162-173.
[24] S. Kobayashi, T. Yakou, Mater. Sci. Eng. A 338 (2002) 44-53.
[25] A. Griger, V. Stefániay, J. Mater.Sci..31(1996) 6645-6652.
[26] L.J. li, Q.L. Bi, J. Yang, L.C. Fu, L.P. Wang, S.C. Wang, W.M. Liu, Scr. Mater. 59(2008) 587-590.
[27] A. Ahmadi, M.R. Toroghinejad, A. Najafizadeh, Mater. Des. 53(2014) 13-19.
[28] Z.H. Tan, B.J. Pang, D.T. Qin, J.Y. Shi, B.Z. Gai, Mater. Sci. Eng. A 489 (2008)302-309.
[29] S.I. Hong, G.T. Gray III, Z. Wang, Mater. Sci. Eng. A 221 (1996) 38-47.
[30] Z.H. Zhang, T. Topping, Y. Li, R. Vogt, Y.Z. Zhou, C. Haines, J. Paras, D. Kapoor,J.M. Schoenung, E.J. Lavernia, Scr. Mater. 65(2001) 652-655.
[1] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[2] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[3] Fang Guan, Jizhou Duan, Xiaofan Zhai, Nan Wang, Jie Zhang, Dongzhu Lu, Baorong Hou. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys[J]. 材料科学与技术, 2020, 36(0): 55-64.
[4] Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 106-117.
[5] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[6] Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening[J]. 材料科学与技术, 2020, 46(0): 44-49.
[7] Guanglong Li, Yingdong Qu, Yaohua Yang, Qiwen Zhou, Xishi Liu, Rongde Li. Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring[J]. 材料科学与技术, 2020, 40(0): 81-87.
[8] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[9] Shaoning Geng, Ping Jiang, Xinyu Shao, Lingyu Guo, Xuesong Gao. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet[J]. 材料科学与技术, 2020, 46(0): 50-63.
[10] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[11] Haijun Zhang, Chenhui Li, Philippe Djemia, Rui Yang, Qingmiao Hu. Prediction on temperature dependent elastic constants of “soft” metal Al by AIMD and QHA[J]. 材料科学与技术, 2020, 45(0): 92-97.
[12] Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review[J]. 材料科学与技术, 2020, 46(0): 74-87.
[13] Ji-Ye Baek, Duy Le Thai, Lee Sang Yeon, Hyungtak Seo. Aluminum doping for optimization of ultrathin and high-k dielectric layer based on SrTiO3[J]. 材料科学与技术, 2020, 42(0): 28-37.
[14] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[15] Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior[J]. 材料科学与技术, 2020, 39(0): 14-21.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.