Please wait a minute...
J. Mater. Sci. Technol.  2015, Vol. 31 Issue (10): 995-1000    DOI: 10.1016/j.jmst.2015.07.007
Orginal Article Current Issue | Archive | Adv Search |
Characterization of Mo-Si-B Nanocomposite Powders Produced Using Mechanical Alloying and Powder Heat Treatment
Bin Li1, Guojun Zhang1, 2, *, Feng Jiang1, Shuai Ren2, Gang Liu1, Jun Sun1
1 State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China;
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mo-Si-B nanocomposite powders with a composition of Mo-12Si-8.5B (in at.%) were processed using mechanical alloying under milling conditions for different milling time and powder-to-ball ratios. The Mo-12Si-8.5B alloy, which consists of α-Mo and intermetallic Mo3Si and T2 phases, was also synthesized by hot-pressed sintering the mechanically alloyed powders under a pressure of 50MPa at 1600°C. The results demonstrated that the sizes and morphologies of the powder particles became gradually refined and uniform by both increasing the milling time and decreasing the powder-to-ball ratio. After 15h of milling, the powders were completely homogenized at the 1:10 and the 1:15 powder-to-ball weight ratios, and the homogenization was accelerated to rapidly stabilize the milling process because of their high milling energy. Annealing the Mo-Si-B milled powders could promote the growth of the intermetallic Mo3Si and the T2 phases, which formed even after low-temperature annealing at 900°C. Increasing the annealing temperature only improved the crystallinity of various phases. When the milled and annealed powders were hot-pressed sintered, the Mo-Si-B alloy exhibited a fine-grained microstructure, where the intermetallics Mo3Si and T2 were distributed in a continuous α-Mo matrix.
Key words:  Intermetallics      Mechanical alloying      Powder metallurgy      Microstructure     
Received:  05 February 2015     
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 51171149 and 51371141) and the National Science Technology Supporting Program of China (Grant No. 2012BAE06B02).
Corresponding Authors:  * Corresponding author. Ph.D.; Tel.: +86 29 82312592; Fax: +86 29 82312994.E-mail address: (G. Zhang).   

Cite this article: 

Bin Li, Guojun Zhang, Feng Jiang, Shuai Ren, Gang Liu, Jun Sun. Characterization of Mo-Si-B Nanocomposite Powders Produced Using Mechanical Alloying and Powder Heat Treatment. J. Mater. Sci. Technol., 2015, 31(10): 995-1000.

URL:     OR

[1] M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thom, J.J. Heubsch, B. Cook. Mater. Sci. Eng. A, 261 (1999), pp. 16-23
[2] M. Meyer, M. Kramer, M. Akinc. Adv. Mater, 8 (1996), pp. 85-88
[3] K. Yoshimi, S. Nakatani, N. Nomura, S. Hanada. Intermetallics, 11 (2003), pp. 787-794
[4] M.R. Middlemas, J.K. Cochran. JOM, 60 (2008), pp. 19-24
[5] E. Summers, A.J. Thom, B. Cook, M. Akinc. Intermetallics, 8 (2000), pp. 1169-1174
[6] J.H. Perepezko, D.M. Dimiduk. MRS Bull, 28 (2003), pp. 639-645
[7] C.A. Nunes, R. Sakidja, Z. Dong, J.H. Perepezko. Intermetallics, 8 (2000), pp. 327-337
[8] P. Jehanno, M. Heilmaier, H. Kestler. Intermetallics, 12 (2004), pp. 1005-1009
[9] A.P. Alur, N. Chollacoop, K.S. Kumar. Acta Mater, 52 (2004), pp. 5571-5587
[10] S. Majumdar, A. Kumar, D. Schliephake, H.J. Christ, X. Jiang, M. Heimaier. Mater. Sci. Eng. A, 573 (2013), pp. 257-263
[11] J.H. Schneibel, M.J. Kramer, O. Unal, R.N. Wright. Intermetallics, 9 (2001), pp. 25-31
[12] J.H. Schneibel, M.J. Kramer, D.S. Easton. Scripta Mater, 46 (2002), pp. 217-221
[13] A.R. Abbasi, M. Shamanian, J. Alloy. Compd, 509 (2011), pp. 8097-8104
[14] P. Jehanno, M. Heilmaier, H. Saage, M. Boning, H. Kestler, J. Freudenberger, S. Drawin. Mater. Sci. Eng. A, 463 (2007), pp. 216-223
[15] M. Kruger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneibel, P. Jehanno. Intermetallics, 16 (2008), pp. 933-941
[16] A.R. Abbasi, M. Shamanian, J. Alloy. Compd, 508 (2010), pp. 152-157
[17] S.R. Bakhshi, M. Salehi, H. Edris, G.H. Borhani. Powder Metall, 51 (2008), pp. 119-124
[18] B. Li, G.J. Zhang, F. Jiang, S. Ren, G. Liu, J. Sun, J. Alloy. Compd, 609 (2014), pp. 80-85
[1] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[2] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[3] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
[4] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[5] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[6] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[7] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[8] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[9] Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications[J]. 材料科学与技术, 2020, 41(0): 191-198.
[10] Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study[J]. 材料科学与技术, 2020, 43(0): 119-125.
[11] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
[12] Xiaojun Sun, Jie He, Bin Chen, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Hongri Hao. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys[J]. 材料科学与技术, 2020, 44(0): 201-208.
[13] Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels[J]. 材料科学与技术, 2020, 45(0): 1-14.
[14] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[15] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.