Please wait a minute...
J. Mater. Sci. Technol.  2016, Vol. 32 Issue (12): 1326-1331    DOI: 10.1016/j.jmst.2016.03.007
Orginal Article Current Issue | Archive | Adv Search |
Structural Modification of Al65Cu16.5Ti18.5 Amorphous Powder through Annealing and Post Milling: Improving Thermal Stability
Tan Zhen1,Wang Lu1,2,Xue Yunfei1,2,*(),Cheng Xingwang1,2,Zhang Long3
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2 National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing 100081, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To improve thermal stability of the Al65Cu16.5Ti18.5 amorphous powder, structural modification of the amorphous powder was performed through annealing and post milling. Annealing above the crystallization temperature (Tx) not only induced nanoscale intermetallics to precipitate in the amorphous powder, but also increased Cu atomic percentage within the residual amorphous phase. Post milling induced the amorphization of the nanocrystal intermetallics and the formation of Cu9Al4 from the residual amorphous phase. Thus, a mixed structure consisting of amorphous phase and Cu9Al4 was obtained in the powder after annealing and post milling (the APMed powder). The phase constituent in the APMed powder did not change during the post annealing, which exhibited significantly improved thermal stability in comparison with the as-milled amorphous powder.

Key words:  Amorphous powder      Thermal stability      Heat treatment      Mechanical alloying      Transmission electron microscopy     
Received:  09 June 2015     
Corresponding Authors:  Xue Yunfei     E-mail:  xueyunfei@bit.edu.cn

Cite this article: 

Tan Zhen,Wang Lu,Xue Yunfei,Cheng Xingwang,Zhang Long. Structural Modification of Al65Cu16.5Ti18.5 Amorphous Powder through Annealing and Post Milling: Improving Thermal Stability. J. Mater. Sci. Technol., 2016, 32(12): 1326-1331.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2016.03.007     OR     https://www.jmst.org/EN/Y2016/V32/I12/1326

Fig. 1.  (a) DSC plot of the as-milled powder, (b) XRD patterns of the annealed powder at different temperatures.
Phase Structure Space group Lattice parameters (experimental) Lattice parameters (theoretical) JCPDS
TiH2 Tetragonal I4/mmm (139) a = 0.309 nm, b = 0.309 nm, c = 0.415 nm a = 0.3120 nm, b = 0.3120 nm, c = 0.4180 nm 09-0371
Al5CuTi2 Cubic Pm3m (221) a = b = c = 0.394 nm a = b = c = 0.3927 nm 45-0168
Al2Cu Tetragonal I4/mmm (140) a = 0.610 nm, b = 0.610 nm, c = 0.485 nm a = 0.6065 nm, b = 0.6065 nm, c = 0.4873 nm 25-0012
Al3Ti Tetragonal I4/mmm (139) a = 0.385 nm, b = 0.385 nm, c = 0.860 nm a = 0.38537 nm, b = 0.38537 nm, c = 0.85839 nm 37-1449
AlCu2Ti Cubic Fm-3m (221) a = b = c = 0.603 nm a = b = c = 0.6019 nm 51-0888
Cu9Al4 Cubic P-43m (215) a = b = c = 0.872 nm a = b = c = 0.8703 nm 24-0003
Table 1.  Detailed information of all the crystalline phases corresponding to the peaks on the XRD patterns
Fig. 2.  (a) TEM (inset: the corresponding SAED pattern) and (b) HRTEM (insets: the corresponding FFT patterns) images of the as-milled powder; (c) EDS spot analysis corresponding to the amorphous phase (marked by area I); (d) TEM (inset: the corresponding SAED pattern) and (e) HRTEM images of the annealed powder at 773 K; (f) TEM (inset: the corresponding SAED pattern) and (g) HRTEM images of the annealed powder at 873 K.
Fig. 3.  TEM (a) and corresponding EDS results (b-g) of the annealed powder at 773 K; (b-d) map analysis of Al, Ti, and Cu corresponding to (a), respectively; (e-g) spot analysis corresponding to areas I, II, and III in (a), respectively.
Fig. 4.  (a) XRD patterns of the APMed powder (annealing at 773 K followed by post milling for different times); (b) HRTEM image of the APMed powder (annealing at 773 K followed by post milling for 12 h).
Fig. 5.  XRD patterns of the APMed powder (annealing at 623, 673, 773, and 873 K followed by post milling for 30 h, respectively).
Fig. 6.  TEM images (a-d) and EDS results (e-f) of the APMed powder (annealing at 773 K followed by post milling for 30 h). (a) typical TEM image; (b) corresponding SAED pattern in (a); (c) HRTEM image of the amorphous region (inset: corresponding FFT patterns); (d) HRTEM image of the crystal region (inset: corresponding FFT patterns); (e) spot analysis of the area I in (c); (f) spot analysis of the area II in (d).
Fig. 7.  XRD patterns of the annealed APMed powder (annealing at 623, 673, 773, and 873 K followed by post milling for 30 h and subsequent annealing at 773 K for 30 min).
Fig. 8.  Gibbs free energy versus configuration during APM.
[1] D. Roy, S. Kumari, R. Mitra, I. Manna, Intermetallics 15 (2007) 1595-1605.
[2] S. Mula, K. Mondal, S. Ghosh, S.K. Pabi, Mater. Sci. Eng. A 527 (2010) 3757-3763.
[3] M. Krasnowski, A. Antolak-Dudka, T. Kulik, Intermetallics 19 (2011) 1243-1249.
[4] Y.H. Kim, G.S. Choi, I.G. Kim, A. Inoue, Mater.Trans.JIM 37 (1996) 1471-1478.
[5] J. Gu, M. Song, S. Ni, S.F. Guo, Y.H. He, Mater. Des. 47(2013) 706-710.
[6] Y.G.Wang, Y. Liu, Y.J. Li, B. An, G.H. Cao, S.F. Jin, Y.M. Sun,W.M.Wang,J. Mater.Sci. Technol. 30(2014) 1262-1270.
[7] D. Kakoli, B. Amit, M. Gupta, Mater.Sci.Eng A 394 (2005) 302-311.
[8] P. Perez, G. Garces, S. Gonzalez, H. Nitsche, F. Sommer, P. Adeva, Mater.Sci.Eng A 462 (2007) 211-214.
[9] G.J. Shiflet, Y. He, S.J. Poon, J. Appl. Phys. 64(1988) 6863-6865.
[10] M. Iqbal, J.I. Akhter, H.F. Zhang, Z.Q. Hu,J. Mater. Sci. Technol. 27(2011) 534-538.
[11] D. Roy, H. Raghuvanshi, J.Non Cryst.Solids 357 (2011) 1701-1704.
[12] Z.H. Zhang, Y. Li, R. Vogt, Y.Z. Zhou, J.M. Schoenung, E.J. Lavernia, Philos. Mag.Lett. 92(2012) 235-244.
[13] X.Wei, X.F.Wang, X.F.Wang, F.S. Han, J. Mater. Sci. 45(2010) 6593-6598.
[14] T. Zhang, A. Inoue, Mater. Sci. Eng.A 304-306(2001) 771-774.
[15] S.G. Zhang, M.X. Xia, G.H. Hu, J.G. Li, J.Non Cryst.Solids 356 (2010) 2223-2227.
[16] Y.A. Skakov, Sci. Sinter. 37(2005) 131-138.
[17] C. Suryanarayana, Prog. Mater. Sci. 46(2001) 1-184.
[18] M. Kyoung, S.L. Kyung, J. Alloys Compd. 264(1998) 258-266.
[19] R. Schmid-Fetzer, G. Effenberg, S. IIyenko (Eds.), Light Metal Systems, Part 2,Springer Publishing, Inc, Berlin Heidelberg, 2005, pp. 1-18.
[20] C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones, J. Mater. Sci. 43(2008)7264-7272.
[21] W.C. Johnson, J.K. Lee, G.J. Shiflet, Acta Mater. 54(2006) 5123-5133.
[22] M. Tavoosi, F. Karimzadeh,M.H. Enayati, S.H. Joo, H.S. Kim, J.Mater. Sci. 46(2011)7633-7638.
[23] Z. Tan, Y.F. Xue, L.Wang, X.W. Cheng, L. Zhang, H.F. Zhang, A.M.Wang, PowderMetall. 55(2012) 361-367.
[24] P.P. Chattopadhyay, I. Manna, Mater. Manuf. Process. 17(2002) 583-594.
[1] Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance[J]. 材料科学与技术, 2020, 43(0): 32-39.
[2] Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses[J]. 材料科学与技术, 2020, 42(0): 203-211.
[3] H.R. Peng, B.S Liu, F. Liu. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy[J]. 材料科学与技术, 2020, 43(0): 21-31.
[4] Jiajie Li, Xiangyun Huang, Liangliang Zeng, Bo Ouyang, Xiaoqiang Yu, Munan Yang, Bin Yang, Rawat Rajdeep Singh, Zhenchen Zhong. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films[J]. 材料科学与技术, 2020, 41(0): 81-87.
[5] Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction[J]. 材料科学与技术, 2020, 40(0): 113-118.
[6] Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing[J]. 材料科学与技术, 2020, 41(0): 1-11.
[7] Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy[J]. 材料科学与技术, 2020, 45(0): 133-145.
[8] Yangtao Zhou, Yuning Zan, Shijian Zheng, Xiaohong Shao, Qianqian Jin, Bo Zhang, Quanzhao Wang, Bolv Xiao, Xiuliang Ma, Zongyi Ma. Thermally stable microstructures and mechanical properties of B4C-Al composite with in-situ formed Mg(Al)B2[J]. 材料科学与技术, 2019, 35(9): 1825-1830.
[9] J.S. Zhang, W. Li, X.F. Liao, H.Y. Yu, L.Z. Zhao, H.X. Zeng, D.R. Peng, Z.W. Liu. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys[J]. 材料科学与技术, 2019, 35(9): 1877-1885.
[10] Sheng Cao, Qiaodan Hu, Aijun Huang, Zhuoer Chen, Ming Sun, Jiahua Zhang, Chenxi Fu, Qingbo Jia, Chao Voon Samuel Lim, Rodney R.Boyer, Yi Yang, Xinhua Wu. Static coarsening behaviour of lamellar microstructure in selective laser melted Ti-6Al-4V[J]. 材料科学与技术, 2019, 35(8): 1578-1586.
[11] Meiqiong Ou, Yingche Ma, Weiwei Xing, Xianchao Hao, Bo Chen, Leilei Ding, Kui Liu. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C[J]. 材料科学与技术, 2019, 35(7): 1270-1277.
[12] Kai Guan, Fanzhi Meng, Pengfei Qin, Qiang Yang, Dongdong Zhang, Baishun Li, Wei Sun, Shuhui Lv, Yuanding Huang, Norbert Hort, Jian Meng. Effects of samarium content on microstructure and mechanical properties of Mg-0.5Zn-0.5Zr alloy[J]. 材料科学与技术, 2019, 35(7): 1368-1377.
[13] Decheng Kong, Chaofang Dong, Xiaoqing Ni, Liang Zhang, Jizheng Yao, Cheng Man, Xuequn Cheng, Kui Xiao, Xiaogang Li. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. 材料科学与技术, 2019, 35(7): 1499-1507.
[14] Le Zhou, Abhishek Mehta, Brandon McWilliams, Kyu Cho, Yongho Sohn. Microstructure, precipitates and mechanical properties of powder bed fused inconel 718 before and after heat treatment[J]. 材料科学与技术, 2019, 35(6): 1153-1164.
[15] Minjie Xu, Chao Hu, Haiyan Xiang, Haozi Lu, Travis Shihao Hu, Bonian Hu, Song Liu, Gang Yu. Controllable phase transformation and improved thermal stability of nickel on tungsten substrate by electrodeposition[J]. 材料科学与技术, 2019, 35(5): 727-732.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.