J. Mater. Sci. Technol. ›› 2020, Vol. 53: 174-184.DOI: 10.1016/j.jmst.2020.04.030
• Research Article • Previous Articles Next Articles
Xiru Huaa,b, Qiang Yangb,*(), Dongdong Zhangb, Fanzhi Mengc,*(
), Chong Chena, Zihao Youa, Jinghuai Zhanga,*(
), Shuhui Lvc, Jian Mengb
Received:
2020-03-02
Revised:
2020-04-14
Accepted:
2020-04-14
Published:
2020-09-15
Online:
2020-09-21
Contact:
Qiang Yang,Fanzhi Meng,Jinghuai Zhang
Xiru Hua, Qiang Yang, Dongdong Zhang, Fanzhi Meng, Chong Chen, Zihao You, Jinghuai Zhang, Shuhui Lv, Jian Meng. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy[J]. J. Mater. Sci. Technol., 2020, 53: 174-184.
Fig. 3. BF-TEM image (a) and HAADF STEM image (b) of the eutectoid phase, (c) the enlarged TEM image, (d, f) the SAED patterns from the dark phases, and (e, g, h) the corresponding HRTEM images along with FFT patterns.
Fig. 4. (a) HAADF STEM image of chained eutectoid phase, (b) BF-TEM image of the dark particle marked by the yellow arrow in (a), the corresponding SAED pattern (c), (d) EDS spectrum along with the analysis result, and (e, f) HRTEM images of the dark phase.
Fig. 5. BF-TEM images (a, b) along with the corresponding SAED patterns (c, d), (e) EDS spectrum along with the analysis result, and (f) HRTEM image for the bright phase. The inserts in (a, b) are the corresponding HAADF STEM images.
Fig. 6. HAADF STEM image (a) and BF-TEM image (b) of the plates at grain boundaries, and (c, d) the corresponding SAED patterns. (e) the EDS spectrum along with the analysis result for the 14H LPSO phase, and (f) the HRTEM image of the fine 14H LPSO phase in (a).
Fig. 7. (a) HAADF STEM image and the corresponding EDS mappings for the eutectoid particle simultaneously containing three intermetallic phases, whose corresponding SAED patterns were shown in (c, d, e).
Fig. 8. (a) SAED pattern from Mg12RE and 14H LPSO phases, (b, c) the corresponding HRTEM images of Mg12RE/14H interfaces along with the FFT patterns from local regions marked by 1-4.
Fig. 9. HAADF-STEM image (a) and the corresponding EDS mappings (b) for the fine intermetallic particle in the α-Mg grain, the corresponding SAED patterns of the bright (c) and the dark phases (d), respectively.
Temperature (°C) | CYS (MPa) | UCS (MPa) | εC (%) |
---|---|---|---|
Room temperature | 202 ± 5 | 436 ± 3 | 7.5 ± 1.5 |
150 | 184 ± 4 | 436 ± 2 | 12.1 ± 1.4 |
200 | 165 ± 5 | 440 ± 3 | 14.5 ± 1.7 |
250 | 153 ± 4 | 448 ± 4 | 16.9 ± 1.2 |
Table 1 Mechanical properties of the studied alloy.
Temperature (°C) | CYS (MPa) | UCS (MPa) | εC (%) |
---|---|---|---|
Room temperature | 202 ± 5 | 436 ± 3 | 7.5 ± 1.5 |
150 | 184 ± 4 | 436 ± 2 | 12.1 ± 1.4 |
200 | 165 ± 5 | 440 ± 3 | 14.5 ± 1.7 |
250 | 153 ± 4 | 448 ± 4 | 16.9 ± 1.2 |
Fig. 12. BF-TEM images of microstructures in α-Mg grains of the samples with fracture, (a) twins in α-Mg grain, (b) bands with high density dislocations, (c) dislocation bands interacting with intermetallic skeleton, (d, e) dislocation substructures in the region of dislocation bands interacting with intermetallic skeleton, (f) dislocations around fine particles in α-Mg grain. (a-c, f) B// $\bar{1}2\bar{1}0$Mg, (d, e) B close to $\bar{1}2\bar{1}0$Mg and g = $\bar{1}0\bar{1}0$Mg and [0002]Mg, respectively.
[1] | W.J. Joost, P.E. Krajewski, Scr. Mater. 128 (2017) 107-112. |
[2] | F. Zhong, H. Wu, Y. Jiao, R. Wu, J. Zhang, L. Hou, M. Zhang, J. Mater. Sci. Technol. 39 (2020) 124-134. |
[3] | S. Lv, X. Lu, Y. Li, F. Meng, X. Hua, Q. Yang, X. Qiu, J. Meng, Q. Duan, Mater. Des. 190 (2020), 108561. |
[4] | H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater. 186 (2020) 278-290. |
[5] |
K. Guan, F. Meng, P. Qin, Q. Yang, D. Zhang, B. Li, W. Sun, S. Lv, Y. Huang, N. Hort, J. Meng, J. Mater. Sci. Technol. 35 (2019) 1368-1377.
DOI URL |
[6] |
M.O. Pekguleryuz, A.A. Kaya, Adv. Eng. Mater. 5 (2003) 866-878.
DOI URL |
[7] | J. Majhi, A.K. Mondal, Mater. Sci. Eng. A 744 (2019) 691-703. |
[8] | A.A. Luo, Int. Mater. Rev. 49 (2004) 13-30. |
[9] | J. Zhang, K. Liu, D. Fang, X. Qiu, D. Tang, J. Meng, J. Mater. Sci. 44 (2009) 2046-2054. |
[10] | S.M. Zhu, T.B. Abbott, M.A. Gibson, J.F. Nie, M.A. Easton, Mater. Sci. Eng. A 656 (2016) 34-38. |
[11] | Q. Yang, X. Qiu, S. Lv, F. Meng, K. Guan, B. Li, D. Zhang, Y. Zhang, X. Liu, J. Meng, Mater. Sci. Eng. A 716 (2018) 120-128. |
[12] | A.K. Mondal, A.R. Kesavan, B.R.K. Reddy, H. Dieringa, S. Kumar, Mater. Sci. Eng. A 631 (2015) 45-51. |
[13] | A. Suziki, N.D. Saddock, L. Riester, E. Lara-Curzio, J.W. Jones, T.M. Pollock, Metall. Mater. Trans. A 38 (2007) 420-427. |
[14] | S.M. Zhu, M.A. Easton, M.A. Gibson, M.S. Dargusch, J.F. Nie, Mater. Sci. Eng. A 578 (2013) 377-382. |
[15] | F. Meng, S. Lv, Q. Yang, P. Qin, J. Zhang, K. Guan, Y. Huang, N. Hort, B. Li, X. Liu, J. Meng, J. Alloys. Compd. 795 (2019) 436-445. |
[16] | B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Caceres, M. Easton, Mater. Sci. Eng. A 599 (2014) 204-211. |
[17] |
S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scr. Mater. 63 (2010) 698-703.
DOI URL |
[18] |
D. Choudhuri, N. Dendge, S. Nag, M.A. Gibson, R. Banerjee, Mater. Sci. Eng. A 612 (2014) 140-152.
DOI URL |
[19] | Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190. |
[20] | Y. Guo, Y. Li, B. Liu, W. Liu, X. Liang, Q. Gu, Q. Li, J. Alloys. Compd. 750 (2018) 117-123. |
[21] | Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427. |
[22] | Q. Luo, C. Zhai, D. Sun, W. Chen, Q. Li, J. Mater. Sci. Technol. 35 (2019) 2115-2120. |
[23] | M. Celikin, A.A. Kaya, R. Gauvin, M. Pekguleryua, Scr. Mater. 66 (2012) 737-740. |
[24] | M. Pekguleryuz, M. Celiki, Int. Mater. Rev. 55 (2010) 197-217. |
[25] | S. Gavras, S.M. Zhu, J.F. Nie, M.A. Gibson, M.A. Easton, Mater. Sci. Eng. A 675 (2016) 65-75. |
[26] |
S. Gavras, M.A. Easton, M.A. Gibson, S. Zhu, J.F. Nie, J. Alloys. Compd. 597 (2014) 21-29.
DOI URL |
[27] | D. Choudhuri, D. Jaeger, M.A. Gibson, R. Banerjee, Scr. Mater. 86 (2014) 32-35. |
[28] | N. Birbilis, M.K. Gavanaugh, A.D. Sudholz, S.M. Zhu, M.A. Easton, M.A. Gibson, Corrosion Sci. 53 (2011) 168-176. |
[29] | C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol. 34 (2018) 2235-2239. |
[30] | W.F. Zhu, Q. Luo, J.Y. Zhang, Q. Li, J. Alloys. Compd. 731 (2018) 784-795. |
[31] | Q. Yang, F. Bu, F. Meng, X. Qiu, D. Zhang, T. Zheng, X. Liu, J. Meng, Mater. Sci. Eng. A 628 (2015) 319-326. |
[32] | T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics 17 (2009) 481-490. |
[33] |
S. Lv, X. Lu, F. Meng, Q. Yang, X. Qiu, P. Qin, Q. Duan, J. Meng, Mater. Sci. Eng. A 773 (2020), 138725.
DOI URL |
[34] | K. Strobel, M.A. Easton, V. Tyagi, M. Murray, M.A. Gibson, G. Savage, T.B. Abbott, Int. J. Cast Met.Res. 23 (2010) 81-91. |
[35] | W.L. Xiao, M.A. Easton, S.M. Zhu, M.S. Dargusch, M.A. Gibson, S.S. Jia, J.F. Nie, Adv. Eng. Mater. 14 (2012) 68-76. |
[36] | K.U. Kainer, Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, Wiley-vch Verlag GmbH & Co. KGaA, Weinheim, 2004, pp. 55. |
[37] |
Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, S.W. Xu, Mater. Des. 85 (2015) 549-557.
DOI URL |
[38] | S. Lv, F. Meng, X. Lu, Q. Yang, X. Qiu, Q. Duan, J. Meng, J. Alloys. Compd. 806 (2019) 1166-1179. |
[39] | S. Sandlobes, M. Friak, J. Neugebauer, D. Raabe, Mater. Sci. Eng. A 576 (2013) 61-68. |
[40] | Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys. Compd. 814 (2020), 152297. |
[41] | H. Shi, Q. Li, J. Zhang, Q. Luo, K.C. Chou, CALPHAD 68 (2020), 101742. |
[42] | J. Grobner, A. Kozlov, R. Schmid-Fetzer, M.A. Easton, S. Zhu, M.A. Gibson, J.F. Nie, Acta Mater. 59 (2011) 613-622. |
[43] | M.A. Easton, M.A. Gibson, D. Qiu, S.M. Zhu, J. Grobner, R. Schmid-Fetzer, J.F. Nie, M.X. Zhang, Acta Mater. 60 (2012) 4420-4430. |
[44] |
J. Grobner, M. Hampl, R. Schmid-Retzer, M.A. Easton, S. Zhu, M.A. Gibson, J.F. Nie, Intermetallics 28 (2012) 92-101.
DOI URL |
[45] |
F. Zhang, H. Xu, Y. Du, R. Schmid-Fetzer, T. Zhou, J. Alloys. Compd. 585 (2014) 384-392.
DOI URL |
[46] |
J. Grobner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, R. Schmid-Fetzer, Acta Mater. 60 (2012) 5948-5962.
DOI URL |
[47] |
J. Grobner, A. Kozlov, X.Y. Fang, S.M. Zhu, J.F. Nie, M.A. Gibson, R. Schmid-Fetzer, Acta Mater. 90 (2015) 400-416.
DOI URL |
[48] |
G. Shao, V. Varsani, Y. Wang, M. Qian, Z. Fan, Intermetallics 14 (2006) 596-602.
DOI URL |
[49] |
Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 60 (2012) 6562-6572.
DOI URL |
[50] |
T. Sumitomo, C.H. Caceres, M. Veidt, J. Light Met. 2 (2002) 49-56.
DOI URL |
[51] |
Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, J. Meng, J. Alloys. Compd. 665 (2016) 240-250.
DOI URL |
[52] |
Q. Yang, K. Guan, X. Qiu, D. Zhang, S. Lv, F. Bu, Y. Zhang, X. Liu, J. Meng, Mater. Sci. Eng. A 675 (2016) 396-402.
DOI URL |
[53] |
P. Qin, Q. Yang, K. Guan, F. Meng, S. Lv, B. Li, D. Zhang, N. Wang, J. Zhang, J. Meng, Mater. Sci. Eng. A 764 (2019), 138254.
DOI URL |
[54] | Q. Yang, K. Guan, F. Bu, Y. Zhang, X. Qiu, T. Zheng, X. Liu, J. Meng, Mater. Charact. 113 (2016) 180-188. |
[55] | R.L. Fleischer, Acta Metall. 11 (1963) 203-209. |
[56] | H. Somekawa, C.A. Schuh, Acta Mater. 59 (2011) 7554-7563. |
[57] | H. Somekawa, C.A. Schuh, Acta Mater. 59 (2011) 7554-7563. |
[58] | D. Amberger, P. Eisenlohr, M. Goken, Acta Mater. 60 (2012) 2277-2289. |
[59] | D. Hull, D.J. Bacon, Bacon, Introduction to Dislocations, fifth ed., Elsevier, 2011. |
[60] | D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Mater. Sci. Eng. A 443 (2007) 248-256. |
[61] | Q. Yang, S. Lv, P. Qin, F. Meng, X. Qiu, X. Hua, K. Guan, W. Sun, X. Liu, J. Meng, Mater. Des. 190 (2020), 108566. |
[1] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[2] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[3] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[4] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[5] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[6] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[7] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[8] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[9] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[10] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[11] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[12] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[13] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[14] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[15] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||