Please wait a minute...
J. Mater. Sci. Technol.  2015, Vol. 31 Issue (9): 923-929    DOI: 10.1016/j.jmst.2014.12.009
Orginal Article Current Issue | Archive | Adv Search |
Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature
Hefei Huang1, *, Chao Yang1, Massey de los Reyes2, Yongfeng Zhou1, Long Yan1, Xingtai Zhou1, *
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Bulk metallic nickel-silicon carbide nano-particle (Ni-SiCNP) composites, with milling time ranged from 8 to 48 h, were prepared in a planetary ball mill and sintered using a spark plasma sintering (SPS) furnace. The microstructure of the Ni-SiCNP composites was characterized by transmission electron microscopy (TEM) and their mechanical properties were investigated by tensile measurements. The TEM results showed well-dispersed SiCNP particles, either within the matrix, between twins or along grain boundaries (GB), as well as the presence of stacking faults and twin structures, characteristics of materials with low stacking fault energy. Dislocation lines were also observed to interact with the SiCNP which were plastically nondeformable. A synergistic relationship existed between Hall-Petch strengthening and dispersion strengthening mechanisms, which was shown to greatly influence the mechanical properties of the Ni-SiCNP composites. Both the maximum yield and tensile strengths were found in the Ni-SiCNP composite with a milling time of 48 h, whereas the increased rate of strengths drastically decreased in material milled above 8 h due to the significant SiCNP agglomeration. The ball milling process resulted in the formation of nano-scale, ultra-fine grained (UFG) Ni-SiCNP composites when the milling time was extended for longer periods, greatly strengthening these materials. The sharp decrease in elongation percentages, however, should be comprehensively considered before irreversible inelastic deformation.
Key words:  Ni-SiCNP composite      Mechanical alloying      Spark plasma sintering      Transmission electron microscopy      Tensile test      Ultra-fine grained (UFG)     
Received:  03 September 2014     
Fund: This research was supported by the Knowledge Innovation program of Chinese Academy of Sciences, the National Basic Research Program of China (Grant Nos. 2010CB832903 and 2010CB834503) and the China-Australia Joint Research Project (Grant No. 2014DFG60230).
Corresponding Authors:  Corresponding author. Assist. Prof., Ph.D.; Tel.: +86 21 39194775.Corresponding author. Prof., Ph.D.; Tel.: +86 21 39194769. E-mail addresses: huanghefei@sinap.ac.cn (H. Huang), zhouxingtai@sinap.ac.cn(X. Zhou).     E-mail:  huanghefei@sinap.ac.cn

Cite this article: 

Hefei Huang, Chao Yang, Massey de los Reyes, Yongfeng Zhou, Long Yan, Xingtai Zhou. Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature. J. Mater. Sci. Technol., 2015, 31(9): 923-929.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2014.12.009     OR     https://www.jmst.org/EN/Y2015/V31/I9/923

  (a) SEM micrograph of pure nickel, (b) TEM image of SiCNP powder.
  Dimension of the dogbone-style tensile specimens.
  Bright-field TEM images of unreinforced pure nickel (a) and Ni-SiCNP composites with a milling time of 8 h (b), 24 h (c), 36 h (d) and 48 h (e). High number densities of dispersed SiCNP (marked with red arrows) are visible in the Ni-SiCNP composites.
  EBSD images of unreinforced pure nickel (a) and Ni-SiCNP composites with a milling time of 8 h (b), 24 h (c), 36 h (d) and 48 h (e).
  Grain size distribution (a) and average grain diameter (b) of Ni-SiC composites with the extension of milling time from 8 h to 48 h.
  Bright-field TEM images of the Ni-SiCNP composites with a milling time of 24 h (a) and (b) SAED pattern along a [110] zone axis taken from the twin boundary (circled in (a)).
  Bright-field TEM images showing the distribution of SiCNP in matrix, twin boundary sites and on GB. The interaction of dislocation lines with SiCNP in the Ni-SiCNP composites (24 h) was also observed.
  Variation in yield strength (a) and tensile strength (b) of both the unreinforced pure nickel and the Ni-SiCNP composites milled at different time. The uncertainties are given by the standard deviation (2σ
  ).
  Variation in elongation percentages of unreinforced pure nickel and Ni-SiCNP composites milled at different time. The uncertainties are given by the standard deviation (2σ
[1] J. Liu, A. Upadhyaya, R.M. German Metall. Mater. Trans. A, 30 (1999), pp. 2209-2220
[2] F. Kılıç, H. Gül, S. Aslan, A. Alp, H. Akbulut Colloid. Surf. A-Physicochem. Eng. Asp, 419 (2013), pp. 53-60
[3] C. Dezauzier, N. Becourt, G. Arnaud, S. Contreras, J.L. Ponthenier, J. Camassel, J.L. Robert, J. Pascual, C. Jaussaud Sensor. Actuat. A-Phys, 46 (1995), pp. 71-75
[4] B.M. Epelbaum, P.A. Gurzhiyants, S.V. Belenko Mater. Lett, 34 (1998), pp. 423-429
[5] D. Planson, M.L. Locatelli, F. Lanois, J.P. Chante Mater. Sci. Eng. B, 61 (1999), pp. 497-501
[6] M. Bruzzi, F. Nava, S. Pini, S. Russo Appl. Surf. Sci, 184 (2001), pp. 425-430
[7] R. Wäsche, D. Klaffke Wear, 249 (2001), pp. 220-228
[8] P.J. Wellmann, S. Bushevoy, R. Weingärtner Mater. Sci. Eng. B, 80 (2001), pp. 352-356
[9] Y. Saberi, S.M. Zebarjad, G.H. Akbari J. Alloy. Compd, 483 (2009), pp. 637-640
[10] B. Ghosh, S.K. Pradhan J. Alloy. Compd, 486 (2009), pp. 480-485
[11] V.A. Izhevskyi, L.A. Genova, A.H.A. Bressiani, J.C. Bressiani Int. J. Refract. Met. Hard. Mater, 19 (2001), pp. 409-417
[12] K.M. Mussert, W.P. Vellinga, A. Bakker, S. Van Der Zwaag J. Mater. Sci, 37 (2002), pp. 789-794
[13] C. Carreño-Gallardo, I. Estrada-Guel, C. López-Meléndez, R. Martínez-SánchezJ. Alloy. Compd, 586 (2014), pp. S68-S72
[14] T. Yamasaki, Y.J. Zheng, Y. Ogino, M. Terasawa, T. Mitamura, T. Fukami Mater. Sci. Eng. A, 350 (2003), pp. 168-172
[15] S. Qin, C. Chen, G. Zhang, W. Wang, Z. Wang Mater. Sci. Eng. A, 272 (1999), pp. 363-370
[16] K. Zhang, I.V. Alexandrov, R.Z. Valiev, K. Lu J. Appl. Phys, 84 (1998), pp. 1924-1927
[17] D.V. Kudashov, H. Baum, U. Martin, M. Heilmaier, H. Oettel Mater. Sci. Eng. A, 387 (2004), pp. 768-771
[18] Q. Yang, A.K. Ghosh Acta Mater, 54 (2006), pp. 5159-5170
[19] H.W. Höppel, J. May, M. Göken Adv. Eng. Mater, 6 (2004), pp. 781-784
[20] E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, K. Lu Appl. Phys. Lett, 85 (2004), pp. 4932-4934
[21] F. Dalla Torre, H. Van Swygenhoven, M. Victoria Acta Mater, 50 (2002), pp. 3957-3970
[22] F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews Nanostruct. Mater, 11 (1999), pp. 343-350
[23] J.S.C. Jang, C.C. Koch Scr. Metall. Mater, 24 (1990), pp. 1599-1604
[24] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe J. Mater. Res, 17 (2002), pp. 5-8
[25] N. Tsuji J. Phys.-Conf. Ser, 165 (2009), p. 012010
[26] V. Kaune, C. Müller Mater. Sci. Eng. A, 535 (2012), pp. 1-5
[27] H. Mughrabi, H.W. Höppel, M. Kautz Scripta Mater, 51 (2004), pp. 807-812
[28] L. Orlovskaja, N. Periene, M. Kurtinaitiene, S. Surviliene Surf. Coat. Technol, 111 (1999), pp. 234-239
[29] N.K. Shrestha, M. Masuko, T. Saji Wear, 254 (2003), pp. 555-564
[30] M.D. Ger Mater. Chem. Phys, 87 (2004), pp. 67-74
[31] B. El-Dasher, J. Farmer, J. Ferreira, M.S. de Caro, A. Rubenchik, A. Kimura J. Nucl. Mater, 419 (2011), pp. 15-23
[32] S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, P. Satyanarayana ater. Charact, 62 (2011), pp. 661-672
[33] S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, V.K. Iyer owder Technol, 201 (2010), pp. 70-82
[34] K. Maweja, M.J. Phasha, Y. Yamabe-Mitarai . Alloy. Compd, 523 (2012), pp. 167-175
[35] Ö. Balcı, D. Ağaoğulları, H. Gökçe, İ. Duman, M.L. Öveçoğlu . Alloy. Compd, 586 (2014), pp. S78-S84
[36] J.S. Byun, J.H. Shim, Y.W. Cho . Alloy. Compd, 365 (2004), pp. 149-156
[37] M. Hussain, Y. Oku, A. Nakahira, K. Niihara ater. Lett, 26 (1996), pp. 177-184
[38] J. Reis, R. Chaim ater. Sci. Eng. A, 491 (2008), pp. 356-363
[39] M. Ramezani, T. Neitzert . Achieve. Mater. Manuf. Eng, 55 (2012), pp. 790-798
[40] L. Vanherpe, N. Moelans, B. Blanpain, S. Vandewalle omput. Mater. Sci, 49 (2010), pp. 340-350
[41] S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath cta Mater, 45 (1997), pp. 2633-2638
[42] J.J. Bhattacharyya, R. Mitra ater. Sci. Eng. A, 557 (2012), pp. 92-105
[43] G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, R.W. Armstrong cr. Metall, 20 (1986), pp. 93-97
[44] J.S. Benjamin etall. Trans, 1 (1970), pp. 2943-2951
[45] E.O. Hall roc. Phys. Soc. B, 64 (1951), p. 747
[46] N. Hansen cripta Mater, 51 (2004), pp. 801-806
[47] H.W. Song, S.R. Guo, Z.Q. Hu anostruct. Mater, 11 (1999), pp. 203-210
[48] C.P. Huang, C. Chen, C.Y. Liu, S.S. Lin, K.H. Chen . Mater. Res, 20 (2005), pp. 2772-2779
[49] A.F. Gourgues-Lorenzon, J.M. Haudin atériaux pour l'ingénieur resses Des Mines (2010), pp. 159-170
[1] Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing[J]. 材料科学与技术, 2020, 41(0): 1-11.
[2] Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering[J]. 材料科学与技术, 2020, 41(0): 149-158.
[3] Meiqiong Ou, Yingche Ma, Weiwei Xing, Xianchao Hao, Bo Chen, Leilei Ding, Kui Liu. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C[J]. 材料科学与技术, 2019, 35(7): 1270-1277.
[4] Kai Guan, Fanzhi Meng, Pengfei Qin, Qiang Yang, Dongdong Zhang, Baishun Li, Wei Sun, Shuhui Lv, Yuanding Huang, Norbert Hort, Jian Meng. Effects of samarium content on microstructure and mechanical properties of Mg-0.5Zn-0.5Zr alloy[J]. 材料科学与技术, 2019, 35(7): 1368-1377.
[5] Le Zhou, Abhishek Mehta, Brandon McWilliams, Kyu Cho, Yongho Sohn. Microstructure, precipitates and mechanical properties of powder bed fused inconel 718 before and after heat treatment[J]. 材料科学与技术, 2019, 35(6): 1153-1164.
[6] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[7] Jinfeng Li, Shuo Xiang, Hengwei Luan, Abdukadir Amar, Xue Liu, Siyuan Lu, Yangyang Zeng, Guomin Le, Xiaoying Wang, Fengsheng Qu, Chunli Jiang, Guannan Yang. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition[J]. 材料科学与技术, 2019, 35(11): 2430-2434.
[8] Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. 材料科学与技术, 2019, 35(11): 2600-2607.
[9] Bo Zhou, Manling Sui. High density stacking faults of {10$\bar{1}$1} compression twin in magnesium alloys[J]. 材料科学与技术, 2019, 35(10): 2263-2268.
[10] H.K. Yang, K. Cao, Y. Han, M. Wen, J.M. Guo, Z.L. Tan, J. Lu, Y. Lu. The combined effects of grain and sample sizes on the mechanical properties and fracture modes of gold microwires[J]. 材料科学与技术, 2019, 35(1): 76-83.
[11] Jiangbo Lu, Lu Lu, Sheng Cheng, Ming Liu, Chunlin Jia. Microstructure and secondary phases in epitaxial LaBaCo2O5.5 + δ thin films[J]. 材料科学与技术, 2018, 34(2): 398-402.
[12] Yi Gaosong, Zeng Weizhi, D. Poplawsky Jonathan, A. Cullen David, Wang Zhifen, L. Free Michael. Characterizing and modeling the precipitation of Mg-rich phases in Al 5xxx alloys aged at low temperatures[J]. 材料科学与技术, 2017, 33(9): 991-1003.
[13] Gao W.H.,Yi X.Y.,Meng X.L.,Song G.,Cai W.,Zhao L.C.. Stress-Induced Martensitic Transformation of Zr50Cu25Ni10Co15Nanocrystals Embedded in an Amorphous Matrix[J]. 材料科学与技术, 2017, 33(3): 276-280.
[14] Wang Qunchang, Chen Minghui, Shan Zhongmao, Sui Chengguo, Zhang Lin, Zhu Shenglong, Wang Fuhui. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing[J]. 材料科学与技术, 2017, 33(11): 1416-1423.
[15] Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan, Lei Liwen, Xiao Han, Fu Zhengyi. Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering[J]. 材料科学与技术, 2017, 33(10): 1172-1176.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.