J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (1): 76-83.DOI: 10.1016/j.jmst.2018.09.012
• Orginal Article • Previous Articles Next Articles
H.K. Yangab, K. Caob, Y. Hanb, M. Wenc, J.M. Guoc, Z.L. Tanc, J. Luabd*, Y. Luab*()
Received:
2018-02-12
Revised:
2018-05-17
Accepted:
2018-06-06
Online:
2019-01-04
Published:
2019-01-15
Contact:
Lu J.,Lu Y.
H.K. Yang, K. Cao, Y. Han, M. Wen, J.M. Guo, Z.L. Tan, J. Lu, Y. Lu. The combined effects of grain and sample sizes on the mechanical properties and fracture modes of gold microwires[J]. J. Mater. Sci. Technol., 2019, 35(1): 76-83.
Fig. 1. The electron channeling contrast (ECC) images of the wires cross-section along the longitudinal direction: (a) as-received, (b) 100?°C, (c) 300?°C, (d) 400?°C and (e) 600?°C samples.
Materials | Longitudinal direction (μm) | transverse direction (μm) | Average (μm) | t/d |
---|---|---|---|---|
AR (20?°C) | 1.35 | 0.57 | 0.96 | 16.7 |
100?°C | 1.24 | 1.04 | 1.14 | 14.0 |
300?°C | 1.62 | 1.05 | 1.33 | 12.0 |
400?°C | 4.91 | 4.47 | 4.69 | 3.4 |
600?°C | 18.59 | - | 18.59 | 0.9 |
Table 1 The average grain size of gold microwires in the longitudinal and transverse direction at different annealing temperatures.
Materials | Longitudinal direction (μm) | transverse direction (μm) | Average (μm) | t/d |
---|---|---|---|---|
AR (20?°C) | 1.35 | 0.57 | 0.96 | 16.7 |
100?°C | 1.24 | 1.04 | 1.14 | 14.0 |
300?°C | 1.62 | 1.05 | 1.33 | 12.0 |
400?°C | 4.91 | 4.47 | 4.69 | 3.4 |
600?°C | 18.59 | - | 18.59 | 0.9 |
Fig. 2. The EBSD maps of the wires cross-section along the longitudinal direction: (a) as-received sample, (b) 300?°C, and (c) 600?°C. The color represents the grain orientation along the longitudinal direction as inserted in (a). The inverse pole figure (IPF) for: (d) as-received, (e) 300?°C, and (f) 600?°C samples. The color represents the intensity of texture.
Fig. 3. The TEM observation of fractured samples: (a) 100?°C (the low magnification observation is inserted), (b) 400?°C and (c) 600?°C. The extractions of dislocations in each annealed samples are represent in (d, e & f), respectively.
Fig. 4. The illustration of gold microwire tensile test: (a) before and (b) after tensile test under optical microscopic; The comparisons of (c) engineering stress-strain and (d) true stress-strain curves of as-received and annealed samples.
Fig. 5. The side and top views of fractures: (a1 & a2) as-received, (b1 & b2) 100?°C, (c1 & c2) 300?°C, (d1 & d2) 400?°C and (e1 & e2) 600?°C annealed samples.
Fig. 7. (a) The relation between work-hardening rate (solid lines) and true stress-strain (dash lines), (b) the relation between σθ?and σ of gold wires with different annealing temperatures and values of t/d, and (c) the illustration of σθ-σ?curves.
Fig. 10. (a) Illustration of interior and free-surface regions of grain within cross-section of wire along the transverse direction; (b) the volume fraction of free-surface grains with various t/d values.
|
[1] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 1-6. |
[2] | Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel [J]. J. Mater. Sci. Technol., 2020, 45(0): 35-43. |
[3] | H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 190-202. |
[4] | Y.Z. Tian, Y.P. Ren, S. Gao, R.X. Zheng, J.H. Wang, H.C. Pan, Z.F. Zhang, N.T suji, G.W. Qin. Two-stage Hall-Petch relationship in Cu with recrystallized structure [J]. J. Mater. Sci. Technol., 2020, 48(0): 31-35. |
[5] | Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 46(0): 107-113. |
[6] | A. Shuitcev, D.V. Gunderov, B. Sun, L. Li, R.Z. Valiev, Y.X. Tong. Nanostructured Ti29.7Ni50.3Hf20 high temperature shape memory alloy processed by high-pressure torsion [J]. J. Mater. Sci. Technol., 2020, 52(0): 218-225. |
[7] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[8] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[9] | Xumin Zhu, Congyang Gong, Yun-Fei Jia, Runzi Wang, Chengcheng Zhang, Yao Fu, Shan-Tung Tu, Xian-Cheng Zhang. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C [J]. J. Mater. Sci. Technol., 2019, 35(8): 1607-1617. |
[10] | Shengyu Jiang, Ruihong Wang. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35(7): 1354-1363. |
[11] | Gábor Ribárik, Bertalan Jóni, Tamás Ungár. Global optimum of microstructure parameters in the CMWP line-profile-analysis method by combining Marquardt-Levenberg and Monte-Carlo procedures [J]. J. Mater. Sci. Technol., 2019, 35(7): 1508-1514. |
[12] | M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(4): 491-498. |
[13] | Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation [J]. J. Mater. Sci. Technol., 2019, 35(3): 334-340. |
[14] | Haibin Wang, Mark Gee, Qingfan Qiu, Hannah Zhang, Xuemei Liu, Hongbo Nie, Xiaoyan Song, Zuoren Nie. Grain size effect on wear resistance of WC-Co cemented carbides under different tribological conditions [J]. J. Mater. Sci. Technol., 2019, 35(11): 2435-2446. |
[15] | P. Sharifi, J. Jamali, K. Sadayappan, J.T. Wood. Grain Size Distribution and Interfacial Heat Transfer Coefficient during Solidification of Magnesium Alloys Using High Pressure Die Casting Process [J]. J. Mater. Sci. Technol., 2018, 34(2): 324-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||