Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 41 Issue (0): 149-158    DOI: 10.1016/j.jmst.2019.09.028
Research Article Current Issue | Archive | Adv Search |
Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering
Wanjun Yu, Yongting Zheng*(), Yongdong Yu
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
Download:  HTML  PDF(6134KB) 
Export:  BibTeX | EndNote (RIS)      

It is difficult to synthesize Al2O3/ZrO2 solid solution because of its low solubility under equilibrium solidification conditions. In this work, a new combustion synthesis combined with water atomization (CS-WA) method was developed to prepare supersaturated Al2O3/ZrO2(CeO2) solid solution powders. The ultra-high cooling rate supplied by CS-WA greatly extends solid solubility of Al2O3 in ZrO2. The precipitation mechanism of solid solution was investigated by systematic heat treatments. The initial temperature of the metastable phase decomposed into Al2O3 and ZrO2 is 1050 °C, and it could be completely precipitated at 1400 °C in 0.5 h. The precipitated ZrO2 particles were uniformly dispersed in Al2O3 matrix and grew into submicron scale at annealing temperature of 1450 °C. Subsequently, together with detailed microstructure, phase composition, as well as mechanical properties were collaboratively outlined to discuss spark plasma sintering (SPS) behavior. The solid solution precipitated Al2O3 matrix and ZrO2 particles during the SPS process. Partial ZrO2 particles were uniformly distributed within Al2O3 matrix, while the residuary ZrO2 located at the grain boundaries and formed special transgranular/intergranular structure. The average size of nanoscale transgranular ZrO2 particles was only ~11.5 nm. The compact ZrO2 toughened Al2O3 nano ceramic (N-ZTA) exhibits excellent mechanical properties. This work provides a guidance to produce nanostructured ZTA with high performance.

Key words:  Solid solution      Precipitation      Spark plasma sintering      ZTA      Transgranular/intergranular structure     
Received:  29 June 2019     
Corresponding Authors:  Zheng Yongting     E-mail:

Cite this article: 

Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering. J. Mater. Sci. Technol., 2020, 41(0): 149-158.

URL:     OR

Fig. 1.  XRD pattern of the synthesized AZC solid solution powders.
Sample Peak 1 (2θ) Peak 2 (2θ) Peak 3 (2θ) a (mm) b (mm) c (mm)
Pure t-ZrO2 29.73° 49.28° 59.30° 0.365 0.365 0.531
AZC 30.32° 50.83° 60.37° 0.361 0.361 0.517
Table 1  Lattice parameter of solid solution powders.
Fig. 2.  Powder morphologies (a), particle-size distribution (b), cross-sectional microstructure (c) and EDS spectra (d) of the synthesized AZC solid solution powders.
Fig. 3.  XRD patterns of AZC solid solution powders after annealing at 550-1450 °C.
Fig. 4.  BSE images of AZC solid solution powders after annealing at 950-1450 °C: (a) AZC-950; (b) AZC-1050; (c) AZC-1150; (d) AZC-1250; (e) AZC-1350; (f) AZC-1450.
Fig. 5.  Densification curves of AZC solid solution powders in the SPS (red curve: temperature; blue curve: displacement; green curve: shrinkage rate; black curve: pressure).
Fig. 6.  BSE image of the N-ZTA ceramic.
Fig. 7.  BF-TEM (a), HAADF-STEM at high magnification (b), HAADF-STEM at low magnification (c) and particle-size distribution (d) of transgranular ZrO2 particles.
Fig. 8.  Corresponding EDS elemental mapping of Fig. 7(c): (a) O element; (b) Al element; (c) Zr element; (d) Ce element.
Fig. 9.  (a) HRTEM image of the N-ZTA ceramic and (b-d) the magnified high-resolution images of I, II and III in (a), respectively. The grain boundaries (GB) is marked by the blue triangles. Insets are the corresponding FFT patterns.
Fig. 10.  SEM micrographs of fracture surface for N-ZTA composite ceramic: (a, b) high magnification; (c, d) low magnification.
Fig. 11.  XRD patterns of AZC powders and N-ZTA composite ceramic: (a) AZC-1400-0.5 h; (b) polished surface of N-ZTA; (c) fracture surface of N-ZTA.
[1] J. Binner, K. Annapoorani, A. Paul, I. Santacruz, B. Vaidhyanathan, J. Eur. Ceram. Soc. 28(2008) 973-977.
[2] J. Binner, B. Vaidhyanathan, J. Eur. Ceram. Soc. 28(2008) 1329-1339.
[3] S.W. Kim, K.A.R. Khalil, J. Am. Ceram. Soc. 89(2006) 1280-1285.
[4] Y. Yang, Y. Wang, W. Tian, Z. Wang, Y. Zhao, L. Wang, H. Bian, J. Mater. Sci. Eng. A 508 (2009) 161-166.
[5] B. Jang, Mater. Chem. Phys. 93(2005) 337-341.
[6] A.A. Mahmooda, M.A. Gafur, M.E. Hoque, Mater. Sci. Eng. A 707 (2017) 118-124.
[7] J. Liu, H. Yan, M.J. Reece, K. Jiang, J. Eur. Ceram. Soc. 32(2012) 4185-4193.
[8] Z. Wu, W. Liu, H. Wu, R. Huang, R. He, Q. Jiang, Y. Chen, X. Ji, Z. Tian, S. Wu, Mater. Chem. Phys. 207(2018) 1-10.
[9] M. Kuntz, R. Krüger, Ceram. Int. 44(2018) 2011-2020.
[10] T. Zhu, Z. Xie, Y. Han, S. Li, Y. Li, D. An, X. Luo, J. Am. Ceram. Soc. 101(2018) 1397-1401.
[11] T. Zhu, Z. Xie, Y. Han, S. Li, Ceram. Int. 44(2018) 505-510.
[12] D. Sarkar, S. Adak, N.K. Mitra, Compos. Part A 38 (2007) 124-131.
[13] F. Meng, C. Liu, F. Zhang, Z. Tian, W. Huang, J. Alloys. Compd. 512(2012) 63-67.
[14] H. Manshor, E.C. Abdullah, A.Z.A. Azhar, Y.W. Sing, Z.A. Ahmad, J. Alloys. Compd. 722(2017) 458-466.
[15] D. Sarkar, S. Adak, M.C. Chu, S.J. Cho, N.K. Mitra, Ceram. Int. 33(2007) 255-261.
[16] M. Zhou, L. Xu, X. Xi, P. Li, W. Dai, W. Zhu, A. Shui, L. Zeng, J. Alloys. Compd. 678(2016) 337-342.
[17] M. Ipek, S. Zeytin, C. Bindal, J. Alloys. Compd. 509(2011) 486-489.
[18] J.F. Bartolomé, J. Am. Ceram. Soc. 90(2007) 3177-3184.
[19] M. Schehl, L.A. Díaz, R. Torrecillas, Acta Mater. 50(2002) 1125-1139.
[20] Y.R. Hong, H.H. Nersisyan, J.H. Lee, Int. J. Refract. Met. Hard Mater. 30(2012) 133-138.
[21] L. Mei, G. He, L.L. Wang, G.H. Liu, J.T. Li, J. Eur. Ceram. Soc. 31(2011) 1603-1609.
[22] Y.H. Han, Y. Harada, J.F. Shackelford, J. Lee, K. Kakegawa, Trans. Nonferrous Met. Soc. China 22 (2012) s579-s584.
[23] Y.H. Han, J. Yun, Y. Harada, T. Makino, K. Kakegawa, Adv. Appl. Ceram. 5(2010) 101-103.
[24] L. Mei, G.H. Liu, G. He, L.L. Wang, J.T. Li, Opt. Mater. 34(2012) 981-985.
[25] Y. Harada, N. Uekawa, T. Kojima, K. Kakegawa, J. Mater. Res. 23(2008) 3396-3402.
[26] X. Xu, X. Hu, S. Ren, H. Geng, H. Du, J. Liu, J. Eur. Ceram. Soc. 36(2016) 1791-1796.
[27] D. Jain, K.M. Reddy, A. Mukhopadhyay, B. Basu, Mater. Sci. Eng. A 528 (2010) 200-207.
[28] R. Licheri, R. Orrù, C. Musa, A.M. Locci, G. Cao, J. Alloys. Compd. 478(2009) 572-578.
[29] Y. Cheng, Y. Qi, P. Hu, S. Zhou, G. Chen, J. An, K. Jin, W. Han, J. Am. Ceram. Soc. 99(2016) 2131-2137.
[30] W. Yu, Y. Zheng, Y. Yu, F. Lin, X. Su, P. Yang, Ceram. Int. 44(2018) 12987-12995.
[31] W. Yu, Y. Zheng, Y. Yu, X. Su, J. Am. Ceram. Soc. 102(2019) 7689-7698.
[32] X. Zhou, V. Shukla, W.R. Cannon, B.H. Kear, J. Am. Ceram. Soc. 86(2003) 1415-1420.
[33] W. Yu, Y. Zheng, Y. Yu, X. Su, J. Eur. Ceram. Soc. 39(2019) 4313-4321.
[34] H.Z. Wang, L. Gao, J.K. Guo, J. Eur. Ceram. Soc. 19(1999) 2125-2131.
[1] Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening[J]. 材料科学与技术, 2020, 46(0): 44-49.
[2] Gang Lu, Shuai Nie, Jianjun Wang, Ying Zhang, Tianhai Wu, Yujie Liu, Chunming Liu. Enhancing the bake-hardening responses of a pre-aged Al-Mg-Si alloy by trace Sn additions[J]. 材料科学与技术, 2020, 40(0): 107-112.
[3] Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys[J]. 材料科学与技术, 2020, 41(0): 127-138.
[4] C.Q. Liu, C. He, H.W. Chen, J.F. Nie. Precipitation on stacking faults in Mg-9.8wt%Sn alloy[J]. 材料科学与技术, 2020, 45(0): 230-240.
[5] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[6] Honglei Hu, Mingjiu Zhao, Lijian Rong. Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering[J]. 材料科学与技术, 2020, 47(0): 152-161.
[7] Wei Cui, Qibin Song, Huhu Su, Zhiqing Yang, Rui Yang, Na Li, Xing Zhang. Synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals[J]. 材料科学与技术, 2020, 36(0): 27-36.
[8] Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65[J]. 材料科学与技术, 2020, 36(0): 91-96.
[9] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[10] Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding[J]. 材料科学与技术, 2020, 43(0): 92-103.
[11] Jongbin Go, Jong Un Lee, Hui Yu, Sung Hyuk Park. Influence of Bi addition on dynamic recrystallization and precipitation behaviors during hot extrusion of pure Mg[J]. 材料科学与技术, 2020, 44(0): 62-75.
[12] Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature[J]. 材料科学与技术, 2020, 46(0): 225-236.
[13] Chen Li, Kun Liu, X.-Grant Chen. Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys[J]. 材料科学与技术, 2020, 39(0): 135-143.
[14] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[15] Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy[J]. 材料科学与技术, 2020, 44(0): 24-30.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.