J. Mater. Sci. Technol. ›› 2022, Vol. 103: 73-83.DOI: 10.1016/j.jmst.2021.07.006
• Research Article • Previous Articles Next Articles
Kun Lia,1, Luxin Liangb,1, Peng Dua, Zeyun Caia, Tao Xianga, Hiroyasu Kanetakac,d, Hong Wub,*(), Guoqiang Xiea,e,*(
)
Received:
2021-04-14
Revised:
2021-06-22
Accepted:
2021-07-03
Published:
2022-03-20
Online:
2021-08-27
Contact:
Hong Wu,Guoqiang Xie
About author:
xieguoqiang@hit.edu.cn (G. Xie).Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application[J]. J. Mater. Sci. Technol., 2022, 103: 73-83.
Fig. 3. SEM images of (a) Mg66Zn30Ca4, and Mg66Zn30Ca4 MG composites with different Fe contents before sintering: (b) 5%, (c) 10%, (d) 15%, and (e, f) 20%.
Fig. 5. SEM micrographs of (a) Mg66Zn30Ca4 BMG and (b, c) Mg66Zn30Ca4/Fe BMG composites after sintering. (d) Mapping result for the element distribution of Mg66Zn30Ca4/Fe BMG composites. (e) The line scan of the interface between Mg66Zn30Ca4 and Fe. (f) The elements concentration of Mg66Zn30Ca4 and the composites.
Samples | C | O | Mg | Zn | Ca | Fe |
---|---|---|---|---|---|---|
Mg66Zn30Ca4 | 1.97 | 1.68 | 34.87 | 55.83 | 5.65 | - |
5% Fe | 2.59 | 2.12 | 33.14 | 52.17 | 5.26 | 4.66 |
10% Fe | 2.97 | 2.19 | 30.54 | 50.60 | 4.96 | 8.74 |
15% Fe | 2.81 | 2.24 | 29.74 | 48.23 | 4.92 | 12.06 |
20% Fe | 2.46 | 2.35 | 28.12 | 45.70 | 4.88 | 16.49 |
Table 1 The concentration (wt.%) of elements in Mg66Zn30Ca4 BMG and the composites.
Samples | C | O | Mg | Zn | Ca | Fe |
---|---|---|---|---|---|---|
Mg66Zn30Ca4 | 1.97 | 1.68 | 34.87 | 55.83 | 5.65 | - |
5% Fe | 2.59 | 2.12 | 33.14 | 52.17 | 5.26 | 4.66 |
10% Fe | 2.97 | 2.19 | 30.54 | 50.60 | 4.96 | 8.74 |
15% Fe | 2.81 | 2.24 | 29.74 | 48.23 | 4.92 | 12.06 |
20% Fe | 2.46 | 2.35 | 28.12 | 45.70 | 4.88 | 16.49 |
Sample | C (wt.%) | O (wt.%) |
---|---|---|
Mg66Zn30Ca4 | 0.011 | 0.019 |
5% Fe | 0.013 | 0.025 |
10% Fe | 0.017 | 0.046 |
15% Fe | 0.016 | 0.102 |
20% Fe | 0.023 | 0.261 |
Table 2 The contents of C and O of Mg66Zn30Ca4 and the composites.
Sample | C (wt.%) | O (wt.%) |
---|---|---|
Mg66Zn30Ca4 | 0.011 | 0.019 |
5% Fe | 0.013 | 0.025 |
10% Fe | 0.017 | 0.046 |
15% Fe | 0.016 | 0.102 |
20% Fe | 0.023 | 0.261 |
Fig. 8. (a) Open circuit potential and (b) Tafel polarization curves of Mg66Zn30Ca4 BMG and Mg66Zn30Ca4/Fe BMG composites with different contents of Fe.
Ecorr (V) | Icorr (A/cm2) | |
---|---|---|
Mg66Zn30Ca4 | -1.41±0.2 | (2.5±1.2) × 10-5 |
5% Fe | -1.34±0.1 | (2.2±2.3) × 10-4 |
10% Fe | -1.31±0.1 | (1.2±2.3) × 10-4 |
15% Fe | -1.27±0.1 | (1.3±1.2) × 10-4 |
20% Fe | -1.22±0.1 | (9.4±2.4) × 10-5 |
Table 3 The corrosion current density and potential of Mg66Zn30Ca4 and composites.
Ecorr (V) | Icorr (A/cm2) | |
---|---|---|
Mg66Zn30Ca4 | -1.41±0.2 | (2.5±1.2) × 10-5 |
5% Fe | -1.34±0.1 | (2.2±2.3) × 10-4 |
10% Fe | -1.31±0.1 | (1.2±2.3) × 10-4 |
15% Fe | -1.27±0.1 | (1.3±1.2) × 10-4 |
20% Fe | -1.22±0.1 | (9.4±2.4) × 10-5 |
Fig. 10. Corrosion rate of Mg66Zn30Ca4 BMG after immersion in Hank's solution for 7 days and composite after immersion in Hank's solution for 14 days.
Mg2+ | Zn2+ | Ca2+ | Fe3+ | pH value | |
---|---|---|---|---|---|
Complete medium | 19.2±1.2 | - | 38.0±1.6 | - | 7.40±0.02 |
Mg66Zn30Ca4 | 2119.3±156.2 | 22.6±4.0 | 46.8±4.6 | - | 8.36±0.04 |
Mg66Zn30Ca4/Fe | 842.5±56.4 | 75.4±8.1 | 58.9±5.2 | 0.9±0.2 | 8.24±0.03 |
Table 4 Concentrations (mg/L) of Mg2+, Zn2+, Ca2+, Fe3+ and pH values in supernatants after immersing different specimens for 72 hours.
Mg2+ | Zn2+ | Ca2+ | Fe3+ | pH value | |
---|---|---|---|---|---|
Complete medium | 19.2±1.2 | - | 38.0±1.6 | - | 7.40±0.02 |
Mg66Zn30Ca4 | 2119.3±156.2 | 22.6±4.0 | 46.8±4.6 | - | 8.36±0.04 |
Mg66Zn30Ca4/Fe | 842.5±56.4 | 75.4±8.1 | 58.9±5.2 | 0.9±0.2 | 8.24±0.03 |
Fig. 15. Cell proliferation measured by (a) CCK-8 and (b) live-cell staining assay after culturing RAW 264.7 macrophages in various EMs for 1 day, 3 days and 5 days. *p<0.05, compared to the control; #p<0.05, compared to the Mg66Zn30Ca4/Fe EM × 6 group.
Mg2+ | Zn2+ | Ca2+ | Fe3+ | |
---|---|---|---|---|
Mg66Zn30Ca4 EM × 6 | 369.2 | 3.8 | 39.5 | - |
Mg66Zn30Ca4EM × 10 | 229.2 | 2.3 | 38.9 | - |
Mg66Zn30Ca4/FeEM × 6 | 156.4 | 12.6 | 41.5 | 0.15 |
Mg66Zn30Ca4/Fe EM × 10 | 101.5 | 7.5 | 40.9 | 0.09 |
Table 5 Concentrations (mg/L) of ions in the various EMs after diluting the supernatants by 6 or 10 times.
Mg2+ | Zn2+ | Ca2+ | Fe3+ | |
---|---|---|---|---|
Mg66Zn30Ca4 EM × 6 | 369.2 | 3.8 | 39.5 | - |
Mg66Zn30Ca4EM × 10 | 229.2 | 2.3 | 38.9 | - |
Mg66Zn30Ca4/FeEM × 6 | 156.4 | 12.6 | 41.5 | 0.15 |
Mg66Zn30Ca4/Fe EM × 10 | 101.5 | 7.5 | 40.9 | 0.09 |
[1] |
Z.J. Lin, Y. Zhao, P.K. Chu, L. Wang, H. Pan, Y. Zheng, S. Wu, X. Liu, K.M.C. Che-ung, T. Wong, K.W.K. Yeung, Biomaterials 219 (2019) 119372.
DOI URL |
[2] |
G.Q. Xie, F.X. Qin, S.L. Zhu, D.V. Louzguine-Lugzin, Intermetallics 44 (2014) 55-59.
DOI URL |
[3] |
G.Q. Xie, F.X. Qin, S.L. Zhu, A. Inoue, Intermetallics 29 (2012) 99-103.
DOI URL |
[4] |
G. Perumal, H.S. Grewal, H.S. Arora, Colloids Surf. B 194 (2020) 111197.
DOI URL |
[5] | L. Ruiter, R.M. Cowie, L.M. Jennings, A. Briscoe, D. Janssen, N. Verdonschot, Ma-terials 13 (2020) 3323. |
[6] | F.X. Qin, Y. Zhou, C. Ji, Z.H. Dan, G.Q. Xie, S. Yang, Acta Metall. Sin. Engl. Lett. 29 (2016) 1011-1018. |
[7] |
S.L. Zhu, X.M. Wang, F.X. Qin, A. Inoue, Mater. Sci. Eng. A 459 (2007) 233-237.
DOI URL |
[8] |
X.D. Kong, L. Wang, G.Y. Li, X.H. Qu, J.L. Niu, T.T. Tang, K. Dai, G.Y. Yuan, Y.Q. Hao, Y.Q. Hao, Mater, Sci, Eng, C 86 (2018) 42-47.
DOI URL |
[9] |
C.X. Chen, J.H. Chen, W. Wu, Y.J. Shi, L. Jin, L. Petrini, L. Shen, G.Y. Yuan, W.J. Ding, J.B. Ge, E.R. Edelman, F. Migliavacca, Biomaterials 221 (2019) 119414.
DOI URL |
[10] |
C. Ke, M.S. Song, R.C. Zeng, Y. Qiu, Y. Zhang, R.F. Zhang, R.L. Liu, I. Cole, N. Bir-bilis, X.B. Chen, Corros. Sci. 7 (2019) 240-248.
DOI URL |
[11] |
L. Jin, C.X. Chen, G.Z. Jia, Y.T. Li, J. Zhang, H. Huang, B. Kang, G.Y. Yuan, H. Zeng, T.X. Chen, Acta Biomater 106 (2020) 428-438.
DOI URL |
[12] |
Q.L. Huang, X.Z. Li, T. Liu, H. Wu, X.J. Liu, Q.L. Feng, Y. Liu, Appl. Surf. Sci. 447 (2018) 767-776.
DOI URL |
[13] |
L.X. Liang, Q.L. Huang, Z.X. Ouyang, H. Wu, T. Liu, H. He, J. Xiao, G.H. Lei, K. Zhou, Colloids Surf. B 197 (2021) 111360.
DOI URL |
[14] |
B. Zeller-Plumhoff, C. Malich, D. Kruger, G. Campbell, B. Wiese, S. Galli, A. Wen-nerberg, R. Willumeit-Romer, D.C. Florian, Acta Biomater 101 (2020) 637-645.
DOI PMID |
[15] |
B.P. Zhang, Y.L. Hou, X.D. Wang, Y. Wang, L. Geng, Mater. Sci. Eng. C 31 (2011) 1667-1673.
DOI URL |
[16] |
Y. Lu, A.R. Bradshaw, Y. Chiu, I. Jones, Y. Lu, Mater. Sci. Eng. C 48 (2015) 480-486.
DOI URL |
[17] |
A.F. Cipriano, A. Sallee, R.G. Guan, Z.Y. Zhao, M. Tayoba, J. Sanchez, H.N. Liu, Acta Biomater 12 (2015) 298-321.
DOI PMID |
[18] |
H.W. Miao, D.D. Zhang, C.X. Chen, L. Zhang, J. Pei, Y. Su, H. Huang, Z.C. Wang, B. Kang, W.J. Ding, H. Zeng, G.Y. Yuan, ACS Biomater. Sci. Eng. 5 (2019) 1623-1634.
DOI URL |
[19] | Y.K. Zhang, Z.Q. Cui, D.Q. Gong, W.X. Wang, W.L. Cheng, Rare Met 40 (2020) 1-3. |
[20] |
S. Rahim, M. Joseph, T. Hanas, Mater. Res. Express 7 (2020) 054002.
DOI URL |
[21] |
J.S. Liao, M. Hotta, Y. Yoichi, Mater. Sci. Eng. A 544 (2012) 10-20.
DOI URL |
[22] |
P. Xiong, Z.J. Jia, W.H. Zhou, J.L. Yan, P. Wang, W. Yuan, Y.Y. Li, Y. Cheng, Z.P. Guan, Y.F. Zheng, Acta Biomater 92 (2019) 336-350.
DOI PMID |
[23] |
G.Q. Xie, H. Takada, H. Kanetaka, Mater. Sci. Eng. A 671 (2016) 48-53.
DOI URL |
[24] |
T. Long, X.H. Zhang, Q.L. Huang, L. Liu, Y. Liu, J.Y. Ren, Y. Yin, D.K. Wu, H. Wu, Virtual Phys. Prototyp. 13 (2018) 71-81.
DOI URL |
[25] |
D.C. Ford, D. Hicks, C. Oses, C. Toher, S.C. Curtarolo, Acta Mater 176 (2019) 297-305.
DOI URL |
[26] | T.B. Matias, V. Roche, R P. Nogueira, G.H. Asato, C.S. Kiminami, C. Bolfarini, W.J. Botta, Mater.Des. 110 (2016) 188-195. |
[27] |
H. Wu, L.X. Liang, X.D. Lan, Y. Yin, M. Song, R.D. Li, Y. Liu, H.O. Yang, L. Liu, A.H. Cai, Q.X. Li, W.D. Huang, Appl. Surf. Sci. 507 (2020) 145104.
DOI URL |
[28] |
H.F. Li, S.J. Pang, Y. Liu, L.L. Sun, P.K. Liaw, T. Zhang, Mater. Des. 67 (2015) 9-19.
DOI URL |
[29] | W.L. Johnson, Mrs Bulletin 10 (1999) 42-56. |
[30] |
W. Guo, Y.M. Shao, J.J. Saida, M. Zhao, S.L. Lü, S.S. Wu, J. Alloy. Compd. 795 (2019) 314-318.
DOI URL |
[31] |
Y. Liu, K. Li, T. Luo, M. Song, H. Wu, J. Xiao, Y. Tan, M. Cheng, B. Chen, X. Niu, R. Hu, X. Li, H. Tang, Mater. Sci. Eng. C 56 (2015) 241-250.
DOI URL |
[32] |
J.L. Wang, F. Witte, T.F. Xi, Y.F. Zheng, K. Yang, Y.S. Yang, D.W. Zhao, J. Meng, Y.D. Li, W.R. Li, K.M. Chan, L. Qin, Acta Biomater 21 (2015) 237-249.
DOI URL |
[33] |
C. Shuai, C. He, G. Qian, A. Min, Y. Deng, W. Yang, X. Zang, Composites Part B 207 (2021) 108564.
DOI URL |
[34] |
W. Guo, Y.M. Shao, J.J. Saida, M. Zhao, S.L. Lü, S.S. Wu, J. Alloy. Compd. 795 (2019) 314-318.
DOI URL |
[35] |
L.P. Huang, W.L. Tan, S. Li, Y.M. Li, J. Alloy. Compd. 816 (2020) 152605.
DOI URL |
[36] |
B. Liu, Y.F. Zheng, L.Q. Ruan, Mater. Lett. 65 (2011) 540-543.
DOI URL |
[37] |
B. Sievers, B. Wegener, S. Utzschneider, P. Müller, V. Jansson, S. Rößler, B. Nies, G. Stephani, B. Kieback, P. Quadbeck, Mater. Sci. Eng. B 176 (2011) 1789-1796.
DOI URL |
[38] | J. Cheng, Y.F. Zheng, J. Biomed. Mater. Res. Part B 101 (2013)485-497. |
[39] |
J.F. Wang, Y. Ma, S.F. Guo, W.Y. Jiang, Q.S. Liu, Mater. Des. 153 (2018) 308-316.
DOI URL |
[40] |
F.X. Qin, G.Q. Xie, Z.H. Dan, S.L. Zhu, I. Seki, Intermetallics 42 (2013) 9-13.
DOI URL |
[41] |
Y. Torres, S. Lascano, J. Bris, J. Pavón, J.A. Rodriguez, Mater. Sci. Eng. C 37 (2014) 148-155.
DOI URL |
[42] |
T.B. Matias, V. Roche, R.P. Nogueira, G.H. Asato, C.S. Kiminami, C. Bolfarini, W.J. Botta, A.M. Jorge, Mater. Des. 110 (2016) 188-195.
DOI URL |
[43] |
T.J. Warner, N.A. Thorne, G. Nussbaum, W.M. Stobbs, Surf. Interface Anal. 19 (1992) 386-392.
DOI URL |
[44] | N.M. Chelliah, P. Padaikathan, R. Kumar, J. Magnesium Alloy. 7 (2019) 134-143. |
[45] | I.B. Singh, M. Singh, S. Das, J. Magnesium Alloy. 3 (2015) 142-148. |
[46] | Q.T. Jiang, D.Z. Lu, N. Wang, X.T. Wang, J. Zhang, J.Z. Duan, B.R. Hou, J. Magne-sium Alloy. 9 (2021) 292-304. |
[47] | F.X. Qin, C. Ji, Z.H. Dan, G.Q. Xie, H. Wang, S.I. Yamaura, M. Niinomi, Y.D. Li, Acta Metall. Sin. Engl. Lett. 29 (2016) 793-799. |
[48] |
Y. Wang, X. Li, M. Chen, Y. Zhao, C. You, Y.K. Li, G.R. Chen, ACS Biomater. Sci. Eng. 5 (2019) 2858-2876.
DOI URL |
[49] |
G.Q. Xie, H. Kanetaka, H. Kato, F.X. Qin, W. Wang, Intermetallics 105 (2019) 153-162.
DOI URL |
[50] |
G.Q. Xie, Q. Ohashi, N. Yamaguchi, M. Song, K. Mitsuishi, K. Furuya, T. Noda, J. Mater. Res. 19 (2004) 815-819.
DOI URL |
[51] |
J.X. Lin, X. Tong, Q.X. Sun, Y.N. Luan, D.C. Zhang, Z. Shi, K. Wang, J.G. Lin, Y.C. Li, M. Dargusch, C. Wen, Acta Biomater 115 (2020) 432-446.
DOI URL |
[52] |
A. Kafri, S. Ovadia, G. Yosafovich-Doitch, E. Aghion, J. Mater. Sci.: Mater. Med. 29 (2018) 1-8.
DOI URL |
[53] |
A. Mahato, M. De, P. Bhattacharjee, V. Kumar, P. Mukherjee, G. Singh, B. Kundu, V.K. Balla, S.K. Nandi, J. Mater. Sci.: Mater. Med. 32 (2021) 1-20.
DOI URL |
[54] | T. Wang, C. Lin, B. Dan, L. Zhang, W. Lu, J. Magnesium Alloy. 4 (2021) 1-10. |
[55] |
D. Bian, J.X. Deng, N. Li, X. Chu, Y. Liu, W.T. Li, H. Cai, P. Xiu, Y. Zhang, Z.P. Guan, Y.F. Zheng, Y.H. Kou, B.G. Jiang, R.S. Chen, ACS Appl. Mater. Interfaces 10 (2018) 4394-4408.
DOI URL |
[56] |
Y. Yin, Q.L. Huang, L.X. Liang, X.B. Hu, T. Liu, Y.Z. Weng, T. Long, Y. Liu, Q.X. Li, S.Q. Zhou, H. Wu, J. Alloy. Compd. 785 (2019) 38-45.
DOI URL |
[57] |
H. Wu, Y. Yin, X.B. Hu, C. Peng, Y. Liu, Q.X. Li, W.D. Huang, Q.L. Huang, ACS Biomater. Sci. Eng. 5 (2019) 5548-5557.
DOI URL |
[1] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
[2] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[3] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[4] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[5] | Weiting Li, Xudong Yang, Kunming Yang, Chunnian He, Junwei Sha, Chunsheng Shi, Yunhui Mei, Jiajun Li, Naiqin Zhao. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 60-70. |
[6] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[7] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
[8] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[9] | Xun Fan, Fengchao Wang, Qiang Gao, Yu Zhang, Fei Huang, Ronglin Xiao, Jianbin Qin, Han Zhang, Xuetao Shi, Guangcheng Zhang. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 177-185. |
[10] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
[11] | Jinseo Kim, Le Thai Duy, Hyunwoo Kang, Byungmin Ahn, Hyungtak Seo. Fluorine doping for improved thermoelectric properties of spark plasma sintered bismuth telluride [J]. J. Mater. Sci. Technol., 2021, 90(0): 225-235. |
[12] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[13] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[14] | Xinfeng Zhou, Zirui Jia, Xingxue Zhang, Bingbing Wang, Wei Wu, Xuehua Liu, Binghui Xu, Guanglei Wu. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth [J]. J. Mater. Sci. Technol., 2021, 87(0): 120-132. |
[15] | Weiming Zhang, Biao Zhao, Na Ni, Huimin Xiang, Fu-Zhi Dai, Shijiang Wu, Yanchun Zhou. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 155-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||