J. Mater. Sci. Technol. ›› 2021, Vol. 73: 128-138.DOI: 10.1016/j.jmst.2020.07.040
• Research Article • Previous Articles Next Articles
Zijing Wanga, Fen Wanga,*(), Angga Hermawanb, Yusuke Asakurab, Takuya Hasegawab, Hiromu Kumagaib, Hideki Katob, Masato Kakihanab,c, Jianfeng Zhua, Shu Yinb,*(
)
Received:
2020-05-09
Revised:
2020-07-15
Accepted:
2020-07-15
Published:
2021-05-20
Online:
2020-09-28
Contact:
Fen Wang,Shu Yin
About author:
yin.shu.b5@tohoku.ac.jp(S. Yin).Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature[J]. J. Mater. Sci. Technol., 2021, 73: 128-138.
Fig. 2. (a) TEM images, (b) HRTEM images and (c) SAED images of Ti3C2Tx; (d) TEM images, (e) HRTEM images and (f) SAED images of SnO-SnO2 NPs; (g) TEM images, (h) HRTEM images and (i) SAED images of SnO-SnO2/Ti3C2 nanocomposites.
Fig. 3. SEM images of (a) Ti3C2Tx and (b, c) SnO-SnO2/Ti3C2 nanocomposites; EDS elemental mapping images of SnO-SnO2/Ti3C2 nanocomposites: (d) Sn; (e) O; (f) Ti; (g) C.
Fig. 8. Response time and recovery time of the sensors based on Ti3C2Tx, SnO-SnO2 NPs and SnO-SnO2/Ti3C2Tx nanocomposites for acetone of 100 ppm at room temperature.
Fig. 9. The calculated average gas response of Ti3C2Tx, SnO-SnO2 NPs and SnO-SnO2/Ti3C2Tx sensors at 10-100 ppm of (a) acetone, (b) ethanol, (c) methanol, (d) toluene; (e) the linear fitting curve of the SnO-SnO2/Ti3C2Tx sensor at 100 ppm; (f) the gas response of Ti3C2Tx, SnO-SnO2 NPs and SnO-SnO2/Ti3C2Tx sensors underexposure of 100 ppm of ethanol, methanol, toluene and acetone at room temperature (RT).
Materials | Temp. (oC) | Conc. (ppm) | Response (Ra/Rg or Rg/Ra) | Response/ recovery times (s) | Refs. |
---|---|---|---|---|---|
SnO2 hollow microspheres | 200 | 50 | 16.0 | 5/7 | [ |
Sn-ZnO nanosheets | 320 | 10 | 1.77 | 10/4 | [ |
Hollow SnO2 nanobelts | 260 | 5 | 5.7 | 38/9 | [ |
α-Fe2O3/ SnO2 | 250 | 100 | 16.8 | 3/90 | [ |
Ce-SnO2 spheres | 250 | 100 | 11.9 | 17/38 | [ |
NiO/SnO2 flower-like | 300 | 50 | 20.1 | 2/9 | [ |
SnO-SnO2 | RT | 100 | 3.0 | 35/24 | This work |
SnO-SnO2/ Ti3C2Tx | RT | 100 | 12.1 | 18/9 | This work |
Table 1 Acetone sensing comparison of metal-oxide based sensor.
Materials | Temp. (oC) | Conc. (ppm) | Response (Ra/Rg or Rg/Ra) | Response/ recovery times (s) | Refs. |
---|---|---|---|---|---|
SnO2 hollow microspheres | 200 | 50 | 16.0 | 5/7 | [ |
Sn-ZnO nanosheets | 320 | 10 | 1.77 | 10/4 | [ |
Hollow SnO2 nanobelts | 260 | 5 | 5.7 | 38/9 | [ |
α-Fe2O3/ SnO2 | 250 | 100 | 16.8 | 3/90 | [ |
Ce-SnO2 spheres | 250 | 100 | 11.9 | 17/38 | [ |
NiO/SnO2 flower-like | 300 | 50 | 20.1 | 2/9 | [ |
SnO-SnO2 | RT | 100 | 3.0 | 35/24 | This work |
SnO-SnO2/ Ti3C2Tx | RT | 100 | 12.1 | 18/9 | This work |
[1] |
A. Srivastava, Sensors Actuat. B: Chem. 96 (2003) 24-37.
DOI URL |
[2] |
E. Llobet, J. Brezmes, X. Vilanova, J.E. Sueiras, X. Correig, Sensors Actuat. B:Chem. 41 (1997) 13-21.
DOI URL |
[3] |
N.H. Hanh, L. Van Duy, C.M. Hung, N. Van Duy, Y.W. Heo, N. Van Hieu, N.D. Hoa, Sensors Actuat. A: Phys. 302 (2020), 111834.
DOI URL |
[4] |
K.R. Park, H.B. Cho, J. Lee, Y. Song, W.B. Kim, Y.H. Choa, Sensors Actuat. B: Chem. 302 (2020), 127179.
DOI URL |
[5] |
J.H. Yu, G.M. Choi, Sensors Actuat. B: Chem. 75 (2001) 56-61.
DOI URL |
[6] |
Y. Lü, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, L. Zheng, ACS Appl. Mater. Interfaces 6 (2014) 4186-4195.
DOI URL |
[7] |
H.M. Jeong, J.H. Kim, S.Y. Jeong, C.H. Kwak, J.H. Lee, ACS Appl. Mater. Interfaces 8 (2016) 7877-7883.
DOI URL |
[8] |
S. Yin, Y. Asakura, Tungsten 1 (2019) 5-18.
DOI URL |
[9] |
J. Wu, Q. Huang, D. Zeng, S. Zhang, L. Yang, D. Xia, Z. Xiong, C. Xie, Sensors Actuat. B: Chem. 198 (2014) 62-69.
DOI URL |
[10] |
L. Song, B. Zhao, X. Ju, L. Liu, Y. Gong, W. Chen, B. Lu, Mater. Sci. Semicond. Process. 111 (2020), 104986.
DOI URL |
[11] |
Y.V. Kaneti, Z. Zhang, J. Yue, Q.M. Zakaria, C. Chen, X. Jiang, A. Yu, Phys. Chem. Chem. Phys. 16 (2014) 11471-11480.
DOI PMID |
[12] |
S. Cui, H. Pu, S.A. Wells, Z. Wen, S. Mao, J. Chang, M.C. Hersam, J. Chen, Nat. Commun. 6 (2015) 8632.
DOI URL |
[13] |
M. D’Arienzo, D. Cristofori, R. Scotti, F. Morazzoni, Chem. Mater. 25 (2013) 3675-3686.
DOI URL |
[14] |
T. Kida, S. Fujiyama, K. Suematsu, M. Yuasa, K. Shimanoe, J. Phys. Chem. C 117 (2013) 17574-17582.
DOI URL |
[15] |
S. Xu, K. Kan, Y. Yang, C. Jiang, J. Gao, L. Jing, P. Shen, L. Li, K. Shi, J. Alloys. Compd. 618 (2015) 240-247.
DOI URL |
[16] |
X. Wang, N. Aroonyadet, Y. Zhang, M. Mecklenburg, X. Fang, H. Chen, E. Goo, C. Zhou, Nano Lett. 14 (2014) 3014-3022.
DOI URL |
[17] | Z. Lou, L. Wang, R. Wang, T. Fei, T. Zhang, Solid. Electron. 76 (2012) 91-94. |
[18] |
W. Li, S. Ma, J. Luo, Y. Mao, L. Cheng, D. Gengzang, X. Xu, S. Yan, Mater. Lett. 132 (2014) 338-341.
DOI URL |
[19] |
R. Peng, Y. Li, T. Liu, P. Si, J. Feng, J. Suhr, L. Ci, Mater. Chem. Phys. 239 (2020), 121961.
DOI URL |
[20] |
N.X. Thai, N. Van Duy, N. Van Toan, C.M. Hung, N. Van Hieu, N.D. Hoa, Int. J. Hydrogen Energy 45 (2020) 2418-2428.
DOI URL |
[21] |
F. Shao, M.W. Hoffmann, J.D. Prades, R. Zamani, J. Arbiol, J.R. Morante, E. Varechkina, M. Rumyantseva, A. Gaskov, I. Giebelhaus, Sensors Actuat. B: Chem. 181 (2013) 130-135.
DOI URL |
[22] | Y. Chen, L. Yu, D. Feng, M. Zhuo, M. Zhang, E. Zhang, Z. Xu, Q. Li, T. Wang, Sensors Actuat. B: Chem. 166 (2012) 61-67. |
[23] |
Q. Lin, Y. Li, M. Yang, Sensors Actuat. B: Chem. 173 (2012) 139-147.
DOI URL |
[24] |
H. Yu, T. Yang, Z. Wang, Z. Li, Q. Zhao, M. Zhang, Sensors Actuat. B: Chem. 258 (2018) 517-526.
DOI URL |
[25] |
M. Liu, R. Zhang, W. Chen, Chem. Rev. 114 (2014) 5117-5160.
DOI URL |
[26] |
F. Ren, C. Wang, C. Zhai, F. Jiang, R. Yue, Y. Du, P. Yang, J. Xu, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 7255-7261.
DOI URL |
[27] |
B. Kim, Y. Lu, A. Hannon, M. Meyyappan, J. Li, Sensors Actuat. B: Chem. 177 (2013) 770-775.
DOI URL |
[28] |
L. Li, C. Zhang, W. Chen, Nanoscale 7 (2015) 12133-12142.
DOI URL |
[29] | H. Sunamura, K. Kaneko, N. Furutake, S. Saito, M. Narihiro, M. Hane, Y. Hayashi, IEEE, 2013, pp. T250-T251. |
[30] |
Y. Li, J. Yang, Y. Wang, P. Ma, Y. Yuan, J. Zhang, Z. Lin, L. Zhou, Q. Xin, A. Song, IEEE Electron Dev. Lett. 39 (2017) 208-211.
DOI URL |
[31] |
N. Li, Y. Fan, Y. Shi, Q. Xiang, X. Wang, J. Xu, Sensors Actuat. B: Chem. 294 (2019) 106-115.
DOI URL |
[32] |
A. Shanmugasundaram, P. Basak, L. Satyanarayana, S.V. Manorama, Sensors Actuat. B: Chem. 185 (2013) 265-273.
DOI URL |
[33] |
W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 18116-18124.
DOI URL |
[34] |
E. Lee, A. VahidMohammadi, Y.S. Yoon, M. Beidaghi, D.J. Kim, ACS Sens. 4 (2019) 1603-1611.
DOI URL |
[35] |
B. Xiao, Y.C. Li, X.F. Yu, J.B. Cheng, Sensors Actuat. B: Chem. 235 (2016) 103-109.
DOI URL |
[36] |
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, ACS Appl. Mater. Interfaces 9 (2017) 37184-37190.
DOI URL |
[37] |
H.J. Koh, S.J. Kim, K. Maleski, S.Y. Cho, Y.J. Kim, C.W. Ahn, Y. Gogotsi, H.T. Jung, ACS Sens. 4 (2019) 1365-1372.
DOI URL |
[38] |
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, ACS Nano 12 (2018) 986-993.
DOI URL |
[39] |
Y. Zhang, L. Wang, N. Zhang, Z. Zhou, RSC Adv. 8 (2018) 19895-19905.
DOI URL |
[40] |
S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang, D. Wang, Y. Zhang, Y. Lei, Sensors Actuat. B: Chem. 304 (2020), 127274.
DOI URL |
[41] |
D. Zhang, Z. Wu, X. Zong, Sensors Actuat. B: Chem. 289 (2019) 32-41.
DOI URL |
[42] |
H. Tai, Z. Duan, Z. He, X. Li, J. Xu, B. Liu, Y. Jiang, Sensors Actuat. B: Chem. 298 (2019), 126874.
DOI URL |
[43] |
M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces 8 (2016) 21011-21019.
DOI URL |
[44] |
S.J. Kim, J. Choi, K. Maleski, K. Hantanasirisakul, H.T. Jung, Y. Gogotsi, C.W. Ahn, ACS Appl. Mater. Interfaces 11 (2019) 32320-32327.
DOI URL |
[45] |
Z. Yang, A. Liu, C. Wang, F. Liu, J. He, S. Li, J. Wang, R. You, X. Yan, P. Sun, ACS Sens. 4 (2019) 1261-1269.
DOI URL |
[46] |
E. Lee, D.J. Kim, J. Electrochem. Soc. 167 (2020), 037515.
DOI URL |
[47] |
H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv, J. Mater. Chem. 21 (2011) 5972-5977.
DOI URL |
[48] |
Z. Yang, G. Du, Z. Guo, X. Yu, S. Li, Z. Chen, P. Zhang, H. Liu, Nanoscale 2 (2010) 1011-1017.
DOI URL |
[49] |
J. Fan, D. Tang, X. Mao, H. Zhu, W. Xiao, D. Wang, Metall. Mater. Trans. B 49 (2018) 2770-2778.
DOI URL |
[50] |
J. Geurts, S. Rau, W. Richter, F. Schmitte, Thin Solid Films 121 (1984) 217-225.
DOI URL |
[51] |
M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang, ACS Nano 10 (2016) 11344-11350.
DOI URL |
[52] |
L. Sangaletti, L.E. Depero, B. Allieri, F. Pioselli, E. Comini, G. Sberveglieri, M. Zocchi, J. Mater. Res. 13 (1998) 2457-2460.
DOI URL |
[53] |
A. Leonardy, W.Z. Hung, D.S. Tsai, C.C. Chou, Y.S. Huang, Cryst. Growth Des. 9 (2009) 3958-3963.
DOI URL |
[54] |
L. Liu, X. Wu, F. Gao, J. Shen, T. Li, P.K. Chu, Solid State Commun. 151 (2011) 811-814.
DOI URL |
[55] |
T. Li, L. Liu, X. Li, X. Wu, H. Chen, P.K. Chu, Opt. Lett. 36 (2011) 4296-4298.
DOI PMID |
[56] |
A. Hermawan, B. Zhang, A. Taufik, Y. Asakura, T. Hasegawa, J. Zhu, P. Shi, S. Yin, ACS Appl. Nano Mater. 3 (2020) 4755-4766.
DOI URL |
[57] |
K.S. Sing, Pure Appl. Chem. 57 (1985) 603-619.
DOI URL |
[58] | S. Gregg, K. Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1982, pp. 41-110. |
[59] | A. Afzali, S. Maghsoodlou, Principles and Technological Implications, 2015, pp. 317. |
[60] |
S. Mendioroz, J.A. Pajares, I. Benito, C. Pesquera, F. Gonzalez, C. Blanco, Langmuir 3 (1987) 676-681.
DOI URL |
[61] |
K.S. Sing, R.T. Williams, Adsorp. Sci. Technol. 22 (2004) 773-782.
DOI URL |
[62] |
V. Kutarov, Y.I. Tarasevich, E. Aksenenko, Z. Ivanova, Russ. J. Phys. Chem. A 85 (2011) 1222-1227.
DOI URL |
[63] |
F. Song, H. Su, J. Chen, W.J. Moon, W.M. Lau, D. Zhang, J. Mater. Chem. 22 (2012) 1121-1126.
DOI URL |
[64] |
A. Kolmakov, S. Potluri, A. Barinov, T.O. Mentes, L. Gregoratti, M.A. Nino, A. Locatelli, M. Kiskinova, ACS Nano 2 (2008) 1993-2000.
DOI PMID |
[65] |
L.Y. Liang, Z.M. Liu, H.T. Cao, X.Q. Pan, ACS Appl. Mater. Interfaces 2 (2010) 1060-1065.
DOI URL |
[66] |
J. Grant, Surf. Interface Anal. 14 (1989) 271-283.
DOI URL |
[67] |
M. Repoux, Surf. Interface Anal. 18 (1992) 567-570.
DOI URL |
[68] |
M. Mohai, Surf. Interface Anal. 36 (2004) 828-832.
DOI URL |
[69] |
S.J. Choi, B.H. Jang, S.J. Lee, B.K. Min, A. Rothschild, I.D. Kim, ACS Appl. Mater. Interfaces 6 (2014) 2588-2597.
DOI URL |
[70] | C. Wang, X.D. Zhu, Y.C. Mao, F. Wang, X.T. Gao, S.Y. Qiu, S.R. Le, K.N. Sun, Chem. Commun.(Camb.) 55 (2019) 1237-1240. |
[71] |
M. Tao, Y. Zhang, R. Zhan, B. Guo, Q. Xu, M. Xu, Mater. Lett. 230 (2018) 173-176.
DOI URL |
[72] |
N. Yamazoe, Sensors Actuat. B: Chem. 5 (1991) 7-19.
DOI URL |
[73] |
H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 97 (2010), 072111.
DOI URL |
[74] |
P.C. Hsu, W.C. Chen, Y.T. Tsai, Y.C. Kung, C.H. Chang, C.J. Hsu, C.C. Wu, H.H. Hsieh, J. Appl. Phys. 52 (2013), 05DC07.
DOI URL |
[75] |
M. Johansson, D. Loyd, I. Lundström, Sensors Actuat. B: Chem. 40 (1997) 125-133.
DOI URL |
[76] |
U. Ackelid, L.G. Petersson, Sensors Actuat. B: Chem. 3 (1991) 139-146.
DOI URL |
[77] | F. Delage, P. Pre, P. Le Cloirec, Environmen. Sci. Technol. 34 (2000) 4816-4821. |
[78] |
A. Hermawan, Y. Asakura, M. Inada, S. Yin, J. Mater. Sci. Technol. 51 (2020) 119-129.
DOI URL |
[79] |
F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, H. Li, RSC Adv. 6 (2016) 79343-79349.
DOI URL |
[80] |
S.W. Choi, A. Katoch, J.H. Kim, S.S. Kim, ACS Appl. Mater. Interfaces 7 (2015) 647-652.
DOI URL |
[81] |
O. Lupan, V. Postica, V. Cretu, N. Wolff, V. Duppel, L. Kienle, R. Adelung, Phys. Status Solidi Rapid Res. Lett. 10 (2016) 260-266.
DOI URL |
[82] |
W.H. Doh, W. Jeong, H. Lee, J. Park, J.Y. Park, Nanotechnology 27 (2016), 335603.
DOI URL |
[83] |
T. Schultz, N.C. Frey, K. Hantanasirisakul, S. Park, S.J. May, V.B. Shenoy, Y. Gogotsi, N. Koch, Chem. Mater. 31 (2019) 6590-6597.
DOI URL |
[84] |
H. Ji, W. Zeng, Y. Li, Nanoscale 11 (2019) 22664-22684.
DOI URL |
[85] |
H.J. Kim, J.H. Lee, Sensors Actuat. B: Chem. 192 (2014) 607-627.
DOI URL |
[86] |
G. Korotcenkov, M. Ivanov, I. Blinov, J. Stetter, Thin Solid Films 515 (2007) 3987-3996.
DOI URL |
[87] | Z. Wang, Z. Li, J. Sun, H. Zhang, W. Wang, W. Zheng, C. Wang, J. Phys. Chem. C114 (2010) 6100-6105. |
[88] | S. Seal, S. Shukla, JOM 54 (2002) 35-38. |
[89] |
M. Navaneethan, V. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P. Patil, Y. Hayakawa, Sensors Actuat. B: Chem. 255 (2018) 672-683.
DOI URL |
[90] |
H.J. Koh, S.J. Kim, K. Maleski, S.Y. Cho, Y.J. Kim, C.W. Ahn, Y. Gogotsi, H.T. Jung, ACS Sens. 4 (2019) 1365-1372.
DOI URL |
[91] | B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 1-17. |
[92] |
J. Li, P. Tang, J. Zhang, Y. Feng, R. Luo, A. Chen, D. Li, Ind. Eng. Chem. Res. 55 (2016) 3588-3595.
DOI URL |
[93] |
Y. Al-Hadeethi, A. Umar, S.H. Al-Heniti, R. Kumar, S. Kim, X. Zhang, B.M. Raffah, Ceram. Int. 43 (2017) 2418-2423.
DOI URL |
[94] |
P. Sun, Y. Cai, S. Du, X. Xu, L. You, J. Ma, F. Liu, X. Liang, Y. Sun, G. Lu, Sensors Actuat. B: Chem. 182 (2013) 336-343.
DOI URL |
[95] |
X. Lian, Y. Li, X. Tong, Y. Zou, X. Liu, D. An, Q. Wang, Appl. Surface Sci. 407 (2017) 447-455.
DOI URL |
[96] |
J. Hu, J. Yang, W. Wang, Y. Xue, Y. Sun, P. Li, K. Lian, W. Zhang, L. Chen, J. Shi, Mater. Res. Bull. 102 (2018) 294-303.
DOI URL |
[1] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[2] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[3] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[4] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[5] | Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties [J]. J. Mater. Sci. Technol., 2020, 38(0): 86-92. |
[6] | Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage [J]. J. Mater. Sci. Technol., 2020, 36(0): 70-78. |
[7] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
[8] | Yaqi Shan, Mingliang Wang, Zengliang Shi, Milan Lei, Xiaoxuan Wang, Fu-Gen Wu, Huan-Huan Ran, Gowri Manohari Arumugam, Qiannan Cui, Chunxiang Xu. SERS-encoded nanocomposites for dual pathogen bioassay [J]. J. Mater. Sci. Technol., 2020, 43(0): 161-167. |
[9] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
[10] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[11] | Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction [J]. J. Mater. Sci. Technol., 2019, 35(9): 2107-2114. |
[12] | C.C. Roach, Y.C. Lu. Finite element analysis of the effect of interlayer on interfacial stress transfer in layered graphene nanocomposites [J]. J. Mater. Sci. Technol., 2019, 35(6): 1147-1152. |
[13] | Chaoxuan Shen, Han Wang, Tengxin Zhang, You Zeng. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites [J]. J. Mater. Sci. Technol., 2019, 35(1): 36-43. |
[14] | Ying Gong, Wenying Zhou, Zijun Wang, Li Xu, Yujia Kou, Huiwu Cai, Xiangrong Liu, Qingguo Chen, Zhi-Min Dang. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer [J]. J. Mater. Sci. Technol., 2018, 34(12): 2415-2423. |
[15] | A. Alswat Abdullah, Bin Ahmad Mansor, Zobir Hussein Mohd, Azowa Ibrahim Nor, A. Saleh Tawfik. Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities [J]. J. Mater. Sci. Technol., 2017, 33(8): 889-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||